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ABSTRACT 
In this paper, we investigate a new class of regular open sets called Rα-open sets in topological spaces and its 
properties are studied. 
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1. INTRODUCTION AND PRELIMINARIES 
  
Throughout this paper, a space means a topological space on which no separation axioms are assumed unless otherwise 
explicitly stated. In 1963 Levine [10] initiated semi open sets and gave their properties. Mathematicians gave in several 
papers interesting and different new types of sets. In 2007, A.H.Shareef [14] initiated regular open sets and gave their 
properties. In 1965, O. Njastad [12] introduced α- closed sets. We recall the following definitions and characterizations. 
The closure (resp., interior ) of a subset A of X is denoted by cl A (resp., int A),A subset A of X is said to be regular 
open [14] (resp, semi open [10],pre open [11], α- open [12]) set if A= int cl A (resp., A⊂ cl int A, A⊂ int clA, A⊂ int cl 
int A) The  complement  of  regular  open  (resp.,  semi  open,  pre  open, α- open) set is said to be regular closed (resp.,  
semi closed,  pre closed,  α- closed)  The  intersection  of  all  regular  closed  (resp.,  semi  closed, pre closed, α- 
closed) sets of X containing  A  is  called  regular  closure (resp., semi  closure, pre  closure, α-closure) and denoted by 
rcl A (resp., scl A, pcl A, αcl A). The union of all semi open (resp., pre open, α- open) sets of X contained in A is called 
the semi interior (resp., pre interior, α-interior) and denoted by s int A (resp., p int A, α int A). The family of all regular 
open (resp., semi open, pre open, α- open,  semi closed, pre closed, α- closed, regular closed) subsets of a topological 
space X is denoted by RO(X) (resp., SO(X), PO(X), αO(X), SC(X), PC(X), αC(X),RC(X) ). 
 
Definition: 1.1 A topological space (X, τ) is said to be  

1. Extremally disconnected of cl V∈τ, for every V∈τ. 
2. Locally indiscrete if every open subset of X is closed. 

 
Lemma: 1.2  

1. If X is a locally is indiscrete space, then each semi open subset of X is closed and hence each semi closed 
subset of X is open [3].  

2. A topological space X is hyperconnected if and only if RO(X) = {∅, X} [7]  
 
Theorem: 1.3 Let (X, τ) be a topological space. Then SO(X, τ) =SO(X, αO(X)) [4].  
 
Theorem: 1.4 Let (X, τ) be a topological space.  

1. Let A⊂X. Then A∈RO (X, τ) if and only if int A = int cl A. 
2. If {Aγ: γ∈Γ} is a collection of regular open sets in a topological space (X, τ), then ∪{Aγ: γ∈Γ} is regular 

open. 
 
Proof: Obvious. 
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Theorem: 1.5 Let (X, τ) be a topological space. If A∈τ, and B∈RO(X), then A∩B∈RO(X). 
 
Proof: Given (X, τ) is a topological space and A∈τ, and B∈RO(X). Let x ∈A∩B then x∈A and x ∈B. 
Since  B∈RO(X)⇒x∈A∩B⊂B∈RO(X).Hence A∩B∈RO(X). 
 
Result: 1.6 Every closed set is α-closed. 
 
Theorem: 1.7[8] A space X is extremally disconnected if and only if RO(X) =RC(X). 
 
2. Rα-OPEN SETS 
 
In this section, we introduce and study the concept of Rα- open sets in topological spaces and study some of its 
properties. 
 
Definition: 2.1 A regular open set A of a topological space X is said to be Rα-open if for each x∈A, there exists a         
α-closed set F such that x∈F⊆A. A subset B of a topological space X is Rα-closed, if X-B is Rα-open.  
The family of Rα-open subsets of X is denoted by RαO(X). 
 
Theorem: 2.2 A subset A of a topological space X is Rα-open if and only if A is regular open and it is a union of        
α-closed sets. 
 
Proof: Let A be Rα-open. Then A is regular open x∈A implies, there exists α-closed set Fх Such that x∈Fx⊂A  
 
Hence

x A
U
∈

 Fx⊂A. But x∈A, x∈Fx implies A⊂
x A
U
∈

Fx. This completes one half of the proof. 

Let A be regular open and A=
i I
U
∈

Fi, where each Fi is α-closed. Let x∈A. Then x belongs to some Fi ⊂A.                  

Hence A is Rα-open.  
 
The following result shows that any union of Rα-open sets is Rα-open. 
 
Theorem: 2.3 Let {Aα : α∈Δ} be a family of Rα-open sets in a topological space X. Then U

α∈∆
Aα is an Rα-open set. 

 
Proof: The union of an arbitrary regular open sets is regular open by theorem 1.4.  
 
Suppose that x∈ U

α∈∆
Aα . This implies that there exists α0∈Δ such that x∈  and as  is an Rα-open set, there exists a 

α-closed set F in X such that x∈F⊂ ⊂ U
α∈∆

Aα . Therefore U
α∈∆

Aα is a Rα-open set. 

 
From theorem 2.3, it is clear that any intersection of Rα-closed sets of a topological space X is Rα-closed. The following 
example shows that the intersection of two Rα-open sets need not be Rα-open. 
 
Example: 2.4 Let X= {a, b, c} and τ = {∅, {a}, {b}, {a, b}, X} 
Rα-open sets = {Ф, {a, c}, {b, c}, X},{a, c} ∩{b, c}={c} is not an Rα-open set  
 
Theorem: 2.5 A subset G of the topological space X is Rα-open if and only if for each x∈G, there exists an Rα-open set 
H such that x∈H⊂G. 
 
Proof: Let G be a Rα-open set in X. Then for each x∈G, we have G is an Rα-open set such that x∈G⊂G. Conversely, let 
for each x∈G, there exists an Rα-open set H such that x∈H⊂G. Then G is a union of Rα-open sets, hence by         
theorem 2.3, G is Rα-open. 
 
Theorem: 2.6 If the subset A of X is pre open and semi closed then A is Rα –open set. 
 
Proof: Let A be semi closed and pre open set in a topological space X. Then Int(Cl(A))⊆A and A⊆Int(Cl(A)) 
respectively. This implies that A=Int(Cl(A)).Therefore A is regular open. Then there exists α-closed set F such that 
x∈F⊆A.  Hence A is Rα –open. 
  
Theorem: 2.7 If a space X is a T1 –space, then RαO(X) = RO(X). 
 
Proof: RαO(X)⊂ RO(X). Let A∈RO(X). Let x∈A. As X is a T1 –space, {x} is closed. Every closed set in X is             
α-closed. Hence x∈{x} ⊂ A∈ RαO(X).This completes the proof. 
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Theorem: 2.8 If the family of all regular open subsets of a topological space is a topology on X, then the family of 
RαO(X) is also a topology on X. 
 
Proof: Obvious. 
 
Theorem: 2.9 If a topological space X is locally indiscrete, then every regular open set is Rα –open. 
 
Proof: Let A be a regular open set in X. Then A=Int(Cl(A)). A is also open in X, Int A=A. We get Int(A)= Int(Cl(A)). 
As X is locally indiscrete, Int(A) is closed. Hence Int(A)=Cl(Int(A)). So, Int(Cl(A))= Cl(Int(A)). Then there exists α- 
closed set F such that x∈F⊆A. Hence A is Rα –open. 
 
Theorem: 2.10 If a topological space X is locally indiscrete, then every regular closed set is Rα –open. 
 
Proof: Let A be a regular closed set in X. Then A=Cl(Int(A)). As X is locally indiscrete, Int(A) is closed. Hence 
Int(A)=Cl(Int(A)). So, Cl(Int(A))=Int(A)⊂A. Then there exists α- closed set F such that x∈F⊆A. Hence A is Rα –open. 
 
Theorem: 2.11 If a topological space (X, τ) is locally indiscrete, then τ⊂ RαO(X). 
 
Proof: Let (X, τ) be locally indiscrete then τ⊂RO(X) ⊂ RαO(X). 
 
Theorem: 2.12 If B is clopen subset of a space X and A is Rα–open in X, then A∩B∈RαO(X). 
 
Proof: Let A be Rα –open. So A is regular open. B is open and closed in x. Then by theorem 1.5, A∩B is regular open 
in X. Let x ∈A∩B. Then x∈A and x∈B. Since A is Rα –open, there exists a α –closed set F such that x∈F⊆A. B is 
closed and hence α –closed. F∩B is α –closed. x∈F∩B⊆A∩B. So A∩B is Rα –open.  
 
Theorem: 2.13 Let X be a locally indiscrete and A⊂X, B⊂X. If A∈RαO(X) and B is open, and then A∩B is R α –open 
in X. 
 
Proof: Follows from theorem 2.12. 
 
Theorem: 2.14 Let X be externally disconnected and A⊂X, B⊂X. If A∈RαO(X) and B∈RO(X) then A∩B is Rα –open 
in X. 
 
Proof: Let A∈RαO(X) and B∈RO(X). Hence A is regular open. By Theorem 1.5, A∩B ∈RO(X). Let x∈A∩B. This  
implies  x∈A and  x∈B. As A is Rα –open, there exists a α –closed set F such that x∈F⊆A. X  is  extremally  
disconnected. By Theorem 1.7, B is a regular closed set. This implies F∩B is α-closed. x∈F∩B⊆A∩B. So A∩B is       
Rα – open. 
 
3. Rα-OPERATIONS 
 
Definition: 3.1 A subset N of a topological space X is called Rα - neighbourhood of a subset A of X, if there exists an 
Rα-open set U such that A⊂U⊂N. When A={x}, we say N is Rα- neighbourhood of x. 
 
Definition: 3.2 A point x∈X is said to be an Rα- interior point of A, if there exists an Rα-open set U containing x such 
that x∈U⊂A. The set of all Rα-interior points of A is said to be Rα- interior of A and it is denoted by Rα- int A. 
 
Theorem: 3.3 Let A be any subset of a topological space X. If x is a Rα-interior point of A, then there exists a α-closed 
set F of X containing x such that F⊂A. 
 
Proof: Let x∈Rα- int A. Then there exists a Rα-open set U containing x such that U⊂A. Since U is in R α-open set, 
there exists a α-closed set F such that x∈F⊂U⊂A. 
 
Theorem: 3.4 For any subset A of a topological space X, the following statements are true 

1. The Rα-interior of A is the union of all Rα-open sets contained in A. 
2. Rα-int A is the largest Rα-open set contained in A. 
3. A is Rα-open set if and only of A=Rα-int A. 

 
Proof: obvious. 
 
Theorem: 3.5 If A and B are any subsets of a topological space X. Then, 

1. Rα int∅ =∅ and Rα int X=X  
2. Rα int A⊂A 
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3. If A⊂B, then Rα int A⊂Rα int B 
4. Rα int A∪Rα int B⊂Rαint (A∪B) 
5. Rα int (A∩B)⊂Rα int A∩Rα int B 
6. Rα int (A-B)⊂Rα int A-Rα int B 

 
Proof: 1-5, obvious. 
 
6. Let x∈Rα int (A-B). There exists an Rα-open set U such that x∈U⊂A-B. That is U⊂A. U∩B=∅ and x∉B. Hence x∈Rα 
int A, x∉Rα int B. Hence x∈Rα int A-Rα int B. This completes the proof. 
 
Definition: 3.6 Intersection of all Rα-closed sets containing F is called the Rα-closure of F and is denoted by Rα cl F. 
 
Theorem: 3.7 Let A be a subset of the space X. x∈X is in Rα-closure of A if and only if A∩U≠∅, for every Rα-open set 
U containing x. 
 
Proof: To prove the theorem, let us prove the contra positive. x∉rcl A ⇔There exists an Rα-open set U containing x that 
does not intersect A. Let x∉Rα cl A. X-Rα cl A is an Rα-open set containing x that does not intersect A. Let U be an   
Rα-open set containing x that does not intersect A. X-U is a Rα –closed set containing A. Rα cl A⊂ (X -U) ,              
x∉X-U⇒ x∉Rαcl A. 
 
Theorem: 3.8 Let A be any subset of a space X .A∩F≠ ∅ for every α-closed set F of X containing x, then the point x is 
in the Rα- closure of A. 
 
Proof: Let U be any Rα- open set containing x. So, there exists a α-closed set F such that x∈F⊂U. A∩F≠∅ implies 
A∩U≠∅ for every Rα -open set U containing x. Hence x∈Rα cl A, by theorem 3.7. 
 
Theorem: 3.9 For any subset F of a topological space X, the following statements are true.  

1. Rα cl F is the intersection of all Rα- closed sets in X containing F.  
2. Rα cl F is the smallest Rα -closed set containing F. 
3. F is Rα closed if and only if F= Rα cl F. 

 
Proof: Obvious. 
 
Theorem: 3.10 If F and E are any subsets of a topological space X, then 

1. Rα cl ∅ =∅ and Rα cl X=X. 
2. For any subset F of X, F⊂ Rα cl F.  
3. If F⊂E, then Rα cl F⊂ Rα cl E. 
4. Rα cl F∪ Rα cl E ⊂ Rα cl (F∪E).  
5. Rα cl (F∩E)⊂ Rα cl F ∩ Rα cl E. 

 
Proof: Obvious. 
 
Theorem: 3.11 For any subset A of a topological space X, the following statements are true.  

1. X- Rα cl A= Rα int(X-A). 
2. X- Rα int A= Rα cl A.  
3. Rα int A= X- Rα cl A.  

 
Proof: 1. X- Rα cl A is a Rα-open set contained in (X-A). Hence X- Rα cl A ⊂ Rα int (X-A). 
 
If X- Rα cl A ≠ R α int(X-A), then X- Rα int (X-A) is a Rα closed set properly contained in Rα cl A, a contradiction. 
Hence X- Rα cl A= Rα int(X-A). 2&3 follow from 1. 
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