A RESULT ON COMMON FIXED POINT THEOREM IN COMPLETE L-FUZZY METRIC SPACES

Rajesh Shrivastava*, Jagrati Singhal** and Manoj Sharma***

*Prof. & Head, Department of Mathematics, Govt. Commerce and Science, Benazir College, Bhopal, India
**Sagar Institute of Research & Technology, Bhopal, India
*** Sagar Institute of Research & Technology, Bhopal, India

**E-mail: jagsinghal@rediffmail.com

(Received on: 15-03-11; Accepted on: 05-04-11)

ABSTRACT

The notion of fuzzy sets was introduced by Zadeh. Many authors have studied fixed point theory in fuzzy metric spaces. In the sequel, we shall adopt the usual terminology, notation and conventions of L-fuzzy metric spaces introduced by Saadati [13]. Which are a generalization of fuzzy metric spaces and intuitionistic fuzzy metric spaces. In this paper we prove a common fixed point theorem in L Fuzzy Metric Space which is generalization of result in Adibi et al. [1]

KEY WORDS: Fuzzy Metric Spaces, Intuitionistic Fuzzy metrics spaces, L – Fuzzy metric spaces.

Definition: 1 Let L = (L, _ ≤) be a complete lattice, and U a non-empty set called a universe. An L-fuzzy set A on U is defined as a mapping A: U → L. For each u in U, A (u) represents the degree (in L) to which u satisfies A.

Definition: 2 A triangular norm (t-norm) on L is a mapping T: L × L → L satisfying the following conditions:

(1) (∀ x ∈ L)(T (x, 1 _ L) = x), (boundary condition)
(2) (∀ (x, y) ∈ L × L)T (x, y) = T (y, x), (commutativity)
(3) (∀ (x, y, z) ∈ L × L 3)T (T (x, y), z) = T (x, T (y, z)), (associativity)
(4) (∀ (x, x0, y, y0) ∈ L 4) (x ≤ _ L x0 and y ≤ _ L y0) T (x, y) ≤ _ L T (x0, y0). (monotonicity)

Definition: 3 A t–norm T on L is said to be continuous if for any x, y ∈ L and any sequences {x _ n } and {y _ n } which converge to x and y we have

\[\lim_{n \to \infty} T (x _ n , y _ n) = T (x, y) \]

Definition: 4 The 3-tuple (X,M,T) is said to be an L-fuzzy metric space if X is an arbitrary (non-empty) set, T is a continuous t–norm on L and M is an L-fuzzy set on X × [0,+] satisfying the following conditions for every x, y, z in X and t, s in]0,+∞[

(a) M(x, y, t) ≥ _ L 0 _ L ,
(b) M(x, y, t) = 1 _ L for all t > 0 if and only if x = y,
(c) M(x, y, t) = M(y, x, t),
(d) T (M(x, y, t), M(y, z, s)) ≤ _ L M(x, z, t + s),
(e) M(x, y, t): [0, +∞) → L is continuous and lim t → +∞ M(x, y, t) = 1 _ L.

Definition: 5 A sequence \{x _ n \} in N in an L-fuzzy metric space (X,M, T) is called a Cauchy sequence, if for each e∈ L \ {0 _ L } and t > 0, there exists n_0 ∈ N such that for all m ≥ n ≥ n_0 \ (n ≥ m ≥ n_0), M(x_m, x_n, t) ≥ _ L 1 _ L N(ε).

Corresponding author: Jagrati Singhal**, E-mail: jagsinghal@rediffmail.com

**Sagar Institute of Research & Technology, Bhopal, India
Definition: 6 The sequence \(\{x_n\} \) in \(\mathbb{N} \) is said to be convergent to \(x \in X \) in the L-fuzzy metric space \((X, M, T)\) if \(M(x, x_n, t) \rightarrow 1 \) whenever \(n \rightarrow +\infty \) for every \(t > 0 \).

Definition: 7 A L-fuzzy metric space is said to be complete if and only if every Cauchy sequence is convergent.

Definition: 8 Let \(A \) and \(S \) be mappings from an L-fuzzy metric space \((X, M, T)\) into itself. Then the mappings are said to be compatible if \(\lim_{n \to \infty} M(Ax, Sx, t) = 1 \) for all \(x \in X \) and some \(k > 1 \). Then \(A, B, S \) and \(T \) have a unique common fixed point in \(X \).

Proof: Let \(x_n \in X \) be an arbitrary point in \(X \). By \((i)\), there exists \(x_1, x_2 \in X \) such that \(y_0 = Ax_0 = Tx_1, y_1 = Bx_1 = Sx_2 \). Inductively, we can construct sequences \(\{y_n\} \) and \(\{x_n\} \) in \(X \) such that \(y_{2n} = Ax_{2n} = Tx_{2n+1}, y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}, \) for \(n = 0, 1, 2, \ldots \). Now, we prove that \(\{y_n\} \) is a Cauchy sequence.

Let \(d_m(t) = M(y_m, y_{m+1}, t), t > 0 \).

Then, we have

\[
d_{2n+1} = M(y_{2n}, y_{2n+1}, t)
= M(Ax_{2n}, Bx_{2n+1}, t) \geq 1
\]

\[
M(Sx_{2n}, Tx_{2n+1}, kt), M(Ax_{2n}, Sx_{2n}, kt), M(Ax_{2n+1}, Tx_{2n+1}, kt), M(Ax_{2n}, T x_{2n+1}, kt)
\]
Thus $d_{2n}(t) \geq \ell d_{2n-1}(kt)$ for every $m = 2n \in \mathbb{N}$ and $\forall t > 0$. Similarly for an odd integer $m = 2n + 1$, we have $d_{2n+1}(t) \geq \ell d_{2n}(kt)$. Hence, for every $n \in \mathbb{N}$, we have $d_n(t) \geq \ell d_{n-1}(kt)$.

That is, $M(y_n, y_{n+1}, t) \geq \ell M(y_{n-1}, y_n, kt) \geq \ell \ldots \geq \ell M(y_0, y_1, k^nt)$.

So, by Lemma 5, $\{y_n\}$ is Cauchy and the completeness of X implies $\{y_n\}$ converges to y in X. That is, $\lim n \rightarrow \infty y_n = y$

$$
\lim n \rightarrow \infty y_{2n} = \lim n \rightarrow \infty Ax_{2n} = \lim n \rightarrow \infty Tx_{2n+1}
= \lim n \rightarrow \infty y_{2n+1} = \lim n \rightarrow \infty Bx_{2n+1} = \lim n \rightarrow \infty Sx_{2n+2} = y.
$$

As $B(X) \subseteq S(X)$, there exists $u \in X$ such that $Su = y$. By (iii), we have

$$
M(Au, Bx_{2n+1}, t) \geq \ell [M(Su, Tx_{2n+1}, kt) , M(Ax, Sx, kt), M(Ay, Tx, kt), M(Ax, Ty, kt)] \lor M(Au, Su, kt)
$$

Since M is continuous, we get (whenever $n \rightarrow \infty$ in the above inequality),

$$
M(Au, y, t) \geq \ell M(y, y, kt) = 1 \ell.
$$

Thus $M(Au, y, t) = 1 \ell$, i.e. $Au = y$. Therefore, $Au = Su = y$.

Since $A(X) \subseteq T(X)$, there exists $v \in X$, such that $Tv = y$. Thus,

$$
M(y, Bv, t) = M(Au, Bv, t) \geq \ell [M(Sy, Ty, kt) , M(Ax, Sx, kt), M(Ay, Tx, kt), M(Ax, Ty, kt)] \lor M(Ay, Bv, t) = 1 \ell.
$$

Hence $Tv = Bv = Au = Su = y$. Since (A, S) is weak compatible, we conclude that $ASu = SAu$, that is $Ay = Sy$. Also, since (B, T) is weak compatible then, $TBv = BTv$, that is $Ty = By$.

We now prove that $Ay = y$. By (iii), we have

$$
M(Ay, y, t) = M(Ay, Bv, t) \geq \ell [M(Sy, Ty, kt) , M(Ax, Sx, kt), M(Ay, Tx, kt), M(Ax, Ty, kt)] \lor M(Ay, Bv, t) = M(Ay, y, kt) \geq \ell M(Ay, y, k^nt).
$$

On the other hand, from Lemma 2, we have that

$$
M(Ay, y, t) \geq \ell M(Ay, y, k^nt).\text{Hence, } M(Ay, y, t) = C \text{ for all } t > 0. \text{ Since } (X, M, T) \text{ has property (C), it follows that } C = 1 \ell. \text{ i.e., } Ay = y,
$$

therefore $Ay = Sy = y$. Similarly we prove that $By = y$. By (iii), we have

$$
M(y, By, t) = M(Ay, By, t) \geq \ell [M(Sy, Ty, kt) \lor M(Ay, Sy, kt)] = M(y, By, kt) \geq \ell M(y, By, k^nt).
$$

On the other hand, from Lemma 2, we have that

$$
M(y, By, t) \geq \ell M(y, By, k^nt).\text{Hence, } M(y, By, t) = C
$$

for all $t > 0$. Since (X, M, T) has property (C), it follows that $C = 1 \ell$, i.e., $By = y$. Therefore, $Ay = By = Sy = Ty = y$, that is, y is a common fixed of A, B, S and T. For uniqueness, let x be another common fixed point of A, B, S and T i.e., $x = Ax = Bx = Sx = Tx$. Hence
M(y, x, t) = M(Ay, Bx, t) ≥ ε [M(Sy, Tx, kt), M(Ax, Sx, kt), M(Ay, Tx, kt), M(Ax, Ty, kt)] ∨ M(Ay, Sy, kt)

= M(y, x, kt) ≥ ε M(y, x, k^2t)

On the other hand, from Lemma 2, we have that

M(y, x, t) ≥ ε M(y, x, k^2t).

Hence, M(y, x, t) = C for all t > 0. Since (X, M, T) has property (C), it follows that C = 1, i.e., y = x.

Therefore, y is the unique common fixed point of self-maps A, B, S and T.

REFERENCES:
