TOTAL RESOLVING NUMBER OF EDGE CYCLE GRAPHS G(C₃)

J. PAULRAJ JOSEPH* & N. SHUNMUGAPRIYA

Department of Mathematics,
Manonmaniam Sundaranar University, Tirunelveli - 627 012, Tamil Nadu, India.

(Received On: 20-10-17; Revised & Accepted On: 13-12-17)

ABSTRACT

Let G = (V, E) be a simple connected graph. An ordered subset W of V is said to be a resolving set of G if every vertex is uniquely determined by its vector of distances to the vertices in W. The minimum cardinality of a resolving set is called the resolving number of G and is denoted by r(G). Total resolving number as the minimum cardinality taken over all resolving sets in which 〈W〉 has no isolates and is denoted by tr(G). In this paper, we determine the exact values for the total resolving number of T(C₃), Cₙ(C₃) and Fₛ(C₃). Also, we obtain bounds for the total resolving number of G(C₃) and characterize the extremal graphs.

AMS Subject Classification: Primary 05C12, Secondary 05C35.

Keywords: resolving number, total resolving number, edge cycle graph.

1. INTRODUCTION

Let G = (V, E) be a finite, simple, connected and undirected graph. The degree of a vertex v in a graph G is the number of edges incident with v and it is denoted by d(v). The maximum degree in a graph G is denoted by ∆(G) and the minimum degree is denoted by δ(G). The distance d(u, v) between two vertices u and v in G is the length of a shortest u-v path in G. The maximum value of distance between vertices of G is called its diameter. Let Pₙ denote any path on n vertices, Cₙ denote any cycle on n vertices and Kₙ denote any complete graph on n vertices. A complete bipartite graph is denoted by Kₛ, t. K₁, n – 1 is called a star. A tree containing exactly two vertices that are not end vertices is called a bistar and it is denoted by B₂. The join G + H consists of G ∪ H and all edges joining a vertex of G and a vertex of H. Let P denote the set of all pendant edges of G and |P| = p. Vertices which are adjacent to pendant vertices are called support vertices.

A graph H is called a subgraph of a graph G if V(H) ⊆ V(G) and E(H) ⊆ E(G). A subgraph F if a graph G is called an induced subgraph (F) of G if whenever u and v are vertices of F and uv is an edge of G, then uv is an edge of F as well. For a cut vertex v of a connected graph G, suppose that the disconnected graph G \ {v} has k components G₁, G₂, … , Gₖ (k ≥ 2). The induced subgraphs Bᵢ = G[V(Gᵢ) \ {v}] are connected and referred to as the branches of G at v. The complement Gc of a graph G is that graph whose vertex set is V(G) and such that for each pair u, v of vertices of G, uv is an edge of Gc if and only if uv is not an edge of G. A vertex v in a graph G is called complete vertex if the subgraph by its neighborhood is complete. For an integer s ≥ 2, sK₂ + K₁ is called the friendship graph and is denoted by Fs.

If W = {w₁, w₂, … , wₖ} ⊆ V(G) is an ordered set, then the ordered k-tuple (d(v, w₁), d(v, w₂), … , d(v, wₖ)) is called the representation of v with respect to W and it is denoted by r(v | W). Since the representation for each wᵢ ∈ W contains exactly one 0 in the ith position, all the vertices of W have distinct representations. W is called a resolving set for G if all the vertices of V \ W also have distinct representations. The minimum cardinality of a resolving set is called the resolving number of G and it is denoted by r(G).

Corresponding Author: J. Paulraj Joseph*, Department of Mathematics,
Manonmaniam Sundaranar University, Tirunelveli - 627 012, Tamil Nadu, India.
In 1975, Slater [9] introduced these ideas and used locating set for what we have called resolving set. He referred to the cardinality of a minimum resolving set in G as its location number. In 1976, Harary and Melter [4] discovered these concepts independently as well but used the term metric dimension rather than location number. In 2003, Ping Zhang and Varaporn Saenpholphat [7, 8] studied connected resolving number and in 2015, we introduced and studied total resolving number. In this paper, we use the term resolving number to maintain uniformity in the current literature.

If W is a resolving set and the induced subgraph \(\langle W \rangle \) has no isolates, then W is called a total resolving set of G. The minimum cardinality taken over all total resolving sets of G is called the total resolving number of G and is denoted by \(\text{tr}(G) \). We introduced edge cycle graph in [5] and studied the resolving number of edge cycle graph \(G(C_k) \). An edge cycle graph of a graph G is the graph \(G(C_k) \) formed from one copy of G and \(|E(G)| \) copies of \(P_k \), where the ends of the \(i^{th} \) edge are identified with the ends of \(i^{th} \) copy of \(P_k \).

In this paper, we determine the exact values for the total resolving number of \(T(C_3) \), \(C_n(C_3) \) and \(F_s(C_3) \). Also, we obtain bounds for the total resolving number of \(G(C_3) \) and characterize the extremal graphs.

2. BUILDING BLOCKS

The following results are used in the subsequent sections.

Theorem 2.1: [6] Let \(\{w_1, w_2\} \subset V(G) \) be a total resolving set in G. Then the degrees of \(w_1 \) and \(w_2 \) are at most 3.

Lemma 2.2: [6] For \(n \geq 3 \), \(\text{tr}(P_n) = 2 \) and \(\text{tr}(C_n) = 2 \).

Observation 2.3: [6] Let G be a graph of order \(n \geq 3 \). Then \(2 \leq \text{tr}(G) \leq n - 1 \).

Theorem 2.4: [6] Let G be a graph of order \(n \geq 3 \). Then \(\text{tr}(G) = n - 1 \) if and only if \(G = K_n \) or \(K_{1, n - 1} \).

Definition 2.5: A block of G containing exactly one cut vertex of G is called an end block of G.

Lemma 2.6: [5] Let G be a 1-connected graph with \(\delta(G) \geq 2 \). Then every resolving set contains at least one non cut vertex of each end block.

Corollary 2.7: [5] If G contains b end blocks, then \(r(G) \geq b \).

Definition 2.8: A cycle \(C_r \) is called an end cycle if \(C_r \) contains exactly one vertex of degree at least 3.

Notation 2.9: Let \(e \) denote the number of end cycles of the graph G.

Theorem 2.11: [6] Let T be a tree of order \(n \geq 3 \). Then \(r(T(C_3)) = p \).

In this paper, we investigate the total resolving number of the edge cycle graphs \(G(C_3) \).

3. TOTAL RESOLVING NUMBER OF EDGE CYCLE GRAPHS \(G(C_3) \)

In this section, we determine the exact values for the total resolving number of \(T(C_3) \), \(C_n(C_3) \) and \(F_s(C_3) \).

Observation 3.1: For \(n = 3, 4, 5 \), \(\text{tr}(C_n(C_3)) = 3 \)

Theorem 3.2: For \(n \geq 6 \), \(\text{tr}(C_n(C_3)) = 4 \).

Proof: Let \(V(C_n) = \{v_1, v_2, \ldots, v_n\} \), \(E(C_n) = \{v_1v_2, v_2v_3, \ldots, v_nv_1\} \) and \(u_1, u_2, \ldots, u_n \) be the new vertices in \(C_n(C_3) \) corresponding to the edges \(v_1v_2, v_2v_3, \ldots, v_nv_1 \). Then \(V(C_n(C_3)) = V \cup U \), where \(V = V(C_n), U = \{u_1, u_2, \ldots, u_n\} \) and \(E(C_n(C_3)) = E(C_n) \cup \{u_iv_i, u_{i+1}v_i \mid 1 \leq i \leq n - 1\} \cup \{u_nv_n, u_1v_1\} \). Let W be a total resolving set of \(C_n(C_3) \).

First, we claim that \(\text{tr}(C_n(C_3)) \geq 4 \). Suppose that \(\text{tr}(C_n(C_3)) \leq 3 \). By Theorem 2.1, \(\text{tr}(C_n(C_3)) = 3 \). Therefore \(\langle W \rangle \) is \(P_3 \) or \(K_3 \).

If \(\langle W \rangle \) is \(K_3 \), then without loss of generality, let \(W = \{v_1, u_2, v_2\} \). Then \(r(v_n | W) = r(u_n | W) = \{1, 2, 3\} \), which is a contradiction. If \(\langle W \rangle \) is \(P_3 \), then without loss of generality, let \(W = \{v_1, v_2, v_3, u_1, u_2\} \). Then \(r(v_n | W) = r(u_n | W) \), which is a contradiction. Thus \(\text{tr}(C_n(C_3)) \geq 4 \).
Let \(W = \{v_1, v_2, v_{\lfloor n/2 \rfloor + 1}, v_{\lfloor n/2 \rfloor + 2}\} \). Let \(x, y \) be two distinct vertices of \(V(C_n(C_3)) \setminus W \). If \(d(x, v_i) \neq d(y, v_i) \) or \(d(x, v_i) \neq d(y, v_j) \), then \(r(x | W) \neq r(y | W) \). So we may assume that \(d(x, v_i) = d(y, v_i) \) or \(d(x, v_j) = d(y, v_j) \). Then \(x \in U \) and \(y \in V \) or \(x \in V \) and \(y \in U \). Without loss of generality, let \(x \in U \) and \(y \in V \). But \(d(x, v_{\lfloor n/2 \rfloor + 1}) = d(y, v_{\lfloor n/2 \rfloor + 1}) + 1 \) and \(d(x, v_{\lfloor n/2 \rfloor + 2}) = d(y, v_{\lfloor n/2 \rfloor + 2}) + 1 \). It follows that \(r(x | W) \neq r(y | W) \). Thus \(W \) is a resolving set of \(C_n(C_3) \) and \(\langle W \rangle \) has no isolates, \(tr(C_n(C_3)) \leq 4 \). Hence \(tr(C_n(C_3)) = 4 \).

Lemma 3.3: Let \(G \) be a graph of order \(n \geq 3 \) and \(\delta(G) = 1 \). Then \(tr(G(C_3)) \geq p + s \).

Proof: Let \(W \) be a total resolving set of \(G(C_3) \). Let \(B_1, B_2, \ldots, B_p \) be the end blocks of \(G(C_3) \). Then by Lemma 2.6, \(W \cap V(B_i) \neq \emptyset \), for all \(1 \leq i \leq p \). Since \(W \) is a total resolving set, \(|W \cap V(B_i)| \geq 2 \) for all \(1 \leq i \leq p \). But some end blocks have the common vertex, \(|W \cap V(G(C_3))| \geq p + s \) and hence \(tr(G(C_3)) \geq p + s \).

Theorem 3.4: Let \(T \) be a tree of order at least 3. Then \(tr(T(C_3)) = p + s \).

Proof: The proof follows from Theorem 2.11 and Lemma 3.3.

Corollary 3.5: For \(n \geq 4 \), \(tr(P_n(C_3)) = 4 \).

Corollary 3.6: For \(n \geq 2 \), \(tr(K_{1, n-1}(C_3)) = n \).

Corollary 3.7: For \(s, t \geq 1 \), \(tr(B_s, t(C_3)) = s + t + 2 \).

Theorem 3.8: For \(s \geq 2 \), \(tr(F_s(C_3)) = 2s \).

Proof: Let \(V(F_s) = \{u, u_{11}, u_{12}, u_{21}, u_{22}, \ldots, u_{s1}, u_{s2}\} \) and \(E(F_s) = \{uu_{ij} / 1 \leq i \leq s, j = 1, 2\} \cup \{u_{11}u_{12}, u_{21}u_{22}, \ldots, u_{s1}u_{s2}\} \).

For \(1 \leq j \leq s \), let \(v_i \) be the new vertex of the edge \(u_{i1}u_{i2} \), \(v_j \) be the new vertex of the edge \(uu_{j1} \), and \(v_{j2} \) be the new vertex of the edge \(uu_{j2} \) in \(F_s(C_3) \). Then we have \(G \) contains exactly \(s \) blocks, say \(B_1, B_2, \ldots, B_s \). Let \(W \) be a total resolving set of \(F_s(C_3) \).

First, we claim that \(tr(F_s(C_3)) \geq 2s \). Suppose that \(tr(F_s(C_3)) \leq 2s - 1 \). Then we have \(W \) contains at most three vertices from union of two blocks. Without loss of generality, let \(B_1 \) and \(B_2 \) be such blocks. Then we have \(|W \cap (V(B_1) \cup V(B_2))| \leq 3 \). By Lemma 2.6, \(|W \cap V(B_1) \setminus \{u\}| \neq \emptyset \) and \(|W \cap V(B_2) \setminus \{u\}| \neq \emptyset \). Let \(u, x, y \in W \), where \(x \in N(u) \cap V(B_1) \) and \(y \in N(u) \cap V(B_2) \). Then \(d(x) = 2 \) or \(4 \) in \(F_s(C_3) \). If \(d(x) = 2 \), then without loss of generality, let \(x = v_{11} \). But we have \(r(u_{12} | W) = r(v_{12} | W) \). If \(d(x) = 4 \), then without loss of generality, let \(x = u_{11} \). But we have \(r(v_{11} | W) = r(u_{12} | W) \), which is a contradiction. Hence \(tr(F_s(C_3)) \geq 2s \).

Next, we claim that \(tr(F_s(C_3)) \leq 2s \). Now, let \(W = \{u_{11}, u_{21}, \ldots, u_{i1}\} \cup \{u_{12}, u_{22}, \ldots, u_{i2}\} \). Let \(x, y \) be two distinct vertices of \(V(F_s(C_3)) \setminus W \). Then we consider the following two cases.

Case-1: \(x, y \in V(B_1) \) for some \(1 \leq i \leq s \).

Without loss of generality, let \(x, y \in V(B_1) \). If \(d(x, w) \neq d(y, w) \) for some \(w \in W \cap V(B_1) \), then \(r(x | W) \neq r(y | W) \). So we may assume that \(d(x, w) = d(y, w) \) for all \(w \in W \cap V(B_1) \). Then \(x = v_{11} \) and \(y = u \). But \(d = d(x, w) > d(y, w) = 1 \). It follows that \(r(x | W) \neq r(y | W) \).

Case-2: \(x \in V(B_1), y \in V(B_2) \) for some \(1 \leq i \neq j \leq s \).

Then clearly, \(d(x, w) < d(y, w) \) for all \(w \in W \cap V(B_j) \). It follows that \(r(x | W) \neq r(y | W) \).

Thus \(W \) is a resolving set and \(\langle W \rangle \) has no isolates, \(tr(F_s(C_3)) \leq 2s \). Hence \(tr(F_s(C_3)) = 2s \).

GENERAL BOUNDS AND EXTREMAL GRAPHS

In this section, we obtain bounds for the total resolving number of \(G(C_3) \) and characterize the extremal graphs.
Theorem 4.1: Let G be a graph of order $n \geq 3$. Then $3 \leq \text{tr}(G(C_3)) \leq n$.

Proof: By Theorem 2.1, $\text{tr}(G(C_3)) \geq 3$. Let $V(G) = \{v_i, v_2, \ldots, v_n\}$ and v_j be the new vertex of the edge v_iv_j in $G(C_3)$, where $i, j \in \{1, 2, \ldots, n\}$ and $i \neq j$. Let $W = V(G)$. Then i^{th} and j^{th} coordinates of the representation of v_j are 1. Since $i \neq j$, representation of all v_j are distinct. Therefore $\text{tr}(G(C_3)) \leq n$. Hence $3 \leq \text{tr}(G(C_3)) \leq n$.

Theorem 4.2: Let G be a graph of order $n \geq 3$. Then $\text{tr}(G(C_3)) = 3$ if and only if $G \cong P_3$ or K_3 or C_4 or $K_4 \setminus \{e\}$ or K_4 or C_5.

Proof: Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $\text{tr}(G(C_3)) = 3$. If $n = 3$, then $G \cong P_3$ or K_3. So we may assume that $n \geq 4$. For $i, j \in \{1, 2, \ldots, n\}$ and $i \neq j$, let v_{ij} be the new vertex of the edge v_iv_j in $G(C_3)$. Let $W = \{w_1, w_2, w_3\}$ be a total resolving set of $G(C_3)$.

Let $\langle W\rangle$ be K_3. If W is not a subset of $V(G)$, then without loss of generality, let $W = \{v_1, v_2, v_{12}\}$. Let $X = V(G) \setminus \{v_1, v_2\}$. Since G is connected, a vertex of X, say v_3 is adjacent to v_1 or v_2 or both. If v_3 is adjacent to v_1 or v_2, say v_1, then $r(v_1 | W) = r(v_1 | W) = (1, 2, 2)$ in $G(C_3)$, which is a contradiction. Consequently, $|X| = 1$. Hence $X = \{v_4\}$ and $G \cong K_4$.

Subcase-1: $|N(W)| = 1$ or 2. Now, we consider the following two cases.

Case-1: W is a subset of $V(G)$.

Then without loss of generality, let $W = \{v_1, v_2, v_3\}$, where v_2 is adjacent to v_1 and v_3. Then $r(v_1 | W) = (1, 1, 2)$ and $r(v_1 | W) = (1, 1, 2)$ in $G(C_3)$, which is a contradiction. If there exist two distinct vertices $v_i, v_j \in X$ such that v_i is adjacent to v_1, v_3 and v_j is adjacent to v_1, v_2 & v_3, then $r(v_i | W) = r(v_j | W) = (1, 2, 2)$, which is a contradiction.

Now, we claim that $|N(W)| = 1$ or 2. Suppose $|N(W)| \geq 4$. Let $N(W) = \{v_{4k}, v_{5k}, \ldots, v_k\}$, $k \geq 7$. Without loss of generality, let v_6 be adjacent to v_1 not to v_2 and v_3. Then $r(v_6 | W) = (1, 2, 2) = 2(1, 2, 2)$ in $G(C_3)$, which is a contradiction. If v_2 is adjacent to v_1 & v_3, then $r(v_2 | W) = r(v_2 | W) = (1, 2, 2)$ in $G(C_3)$, which is a contradiction. Consequently, $|N(W)| = 1$ or 2. Now, we consider the following two subcases.

Subcase-1: $|N(W)| = 1$.

Then without loss of generality, let $N(W) = \{v_4\}$. We claim that $|X| = 1$. Suppose $|X| \geq 2$. Then v_4 is a cut vertex of G. Then there are at least two branches at v_4 in $G(C_3)$, say B_1 and B_2. Let $\langle v_1, v_2, v_3, v_4\rangle = B_1$. Therefore B_2 contains at least one end block. But no vertex of B_2 belongs to W, which is a contradiction to Lemma 2.6 and hence $X = \{v_4\}$.

If v_4 is adjacent to v_1 but not to v_2 and v_3, then $r(v_4 | W) = r(v_4 | W) = (1, 2, 2)$ in $G(C_3)$, which is a contradiction. If v_4 is adjacent to v_2 but not to v_1 and v_3, then $G \cong C_4$ and if v_4 is adjacent to v_1, v_2 and v_3, then $G \cong K_4 \setminus \{e\}$.

Subcase-2: $|N(W)| = 2$.

Then without loss of generality, let $N(W) = \{v_4, v_5\}$. Then exactly one vertex of $\{v_4, v_5\}$ is adjacent to exactly one vertex of $\{v_1, v_3\}$. Without loss of generality, let v_4 be adjacent to v_1. If $v_4v_5 \notin E(G)$, then $r(v_4 | W) = r(v_5 | W)$, $i \in \{1, 2, 3\}$, which is a contradiction. Thus $v_4v_5 \in E(G)$.

© 2017, IJMA. All Rights Reserved
If \(v_5 \) is adjacent to \(v_3 \), then we claim that \(|V| = 5\). Suppose \(|V| > 5\). Let \(V = \{v_2, v_2, v_3, \ldots, v_n\} \), \(n \geq 6 \). Let \(\{v_4, v_5, v_2\} \) be \(P_3 \) for some \(i \in \{6, 7, \ldots, n\} \). If \(v_i \) is adjacent to \(v_2 \), then \(r(v_i \mid W) = r(v_4 \mid W) = (2, 3, 3) \) in \(G(C_3) \), which is a contradiction. If \(\{v_6, v_7, v_2\} \) is a \(K_3 \) for some \(i \in \{6, 7, \ldots, n\} \), then \(r(v_i \mid W) = r(v_{12} \mid W) = (2, 3, 2) \) in \(G(C_3) \), which is a contradiction. Therefore \(|V| = 5\) and hence \(G \cong C_5 \).

If \(v_5 \) is adjacent to \(v_1 \) and \(v_3 \) in \(G \), then \(r(v_{12} \mid W) = r(v_{13} \mid W) = (1, 2, 2) \) in \(G(C_3) \), which is a contradiction.

Case-2: \(W \) is not a subset of \(V(G) \).

Then without loss of generality, let \(v_1, v_2 \) and \(v_3 \) be three vertices of \(G \) such that \(\{v_1, v_2, v_3\} \) is a \(P_3 \) or \(K_3 \), and \(v_1 \notin W \) and \(v_2 \in W \). Let \(V_1 = V(G) \setminus X \). Then clearly, no vertex of \(V_1 \) is adjacent to \(v_2 \) in \(G \). For, if \(v_i \in V_1 \) is adjacent to \(v_2 \) in \(G \), then \(r(v_i \mid W) = r(v_{12} \mid W) = (2, 1, 2) \) in \(G(C_3) \), which is a contradiction.

Now, we claim that \(|N(X)| = 1 \). Suppose \(|N(X)| \geq 2 \). Let \(N(X) = \{v_4, v_5, \ldots, v_k\} \), \(k \geq 7 \). Then without loss of generality, let \(v_4 \) be adjacent to exactly one vertex of \(\{v_1, v_3\} \), say \(v_1, v_5 \) be adjacent to \(v_1 \) not to \(v_3 \), and \(v_6 \) be adjacent to \(v_1 \) and \(v_3 \). But a vertex of \(\{v_7, v_8, \ldots, v_k\} \) is adjacent to \(v_1 \) or \(v_3 \) or both. Without loss of generality, let \(v_7 \) be adjacent to \(v_1 \). Then \(r(v_7 \mid W) = r(v_{12} \mid W) \), which is a contradiction and hence \(|N(X)| \leq 3\).

If \(|N(X)| = 2\), then without loss of generality, let \(v_4 \) and \(v_5 \) be two vertices in \(N(X) \). If \(v_4 \) is adjacent to \(v_1 \) and \(v_3 \) in \(G \) and \(v_5 \) is adjacent to \(v_1 \) or \(v_3 \) or both. Without loss of generality, let \(v_1 \) be adjacent to \(v_1 \). Then \(r(v_1 \mid W) = r(v_{12} \mid W) \), which is a contradiction and hence \(|N(X)| \leq 3\).

If \(|N(X)| = 3\), then without loss of generality, let \(v_4, v_5, v_6 \) be three vertices in \(N(X) \) and \(v_4 \) be adjacent to \(v_1, v_5 \) be adjacent to \(v_3, v_6 \) be adjacent to \(v_1 \) and \(v_3 \) in \(G \). Then \(r(v_{12} \mid W) = r(v_{13} \mid W) = (2, 2, 3) \) in \(G(C_3) \), which is a contradiction.

Without loss of generality, let \(N(X) = \{v_4\} \). We claim that \(V_1 = \{v_4\} \). Suppose \(V_1 = \{v_4, v_5, \ldots, v_n\} \), \(n \geq 5 \). If \(H \neq (P_3) \), then \(H(C_3) \) contains at least one end block. But no vertex of \(H(C_3) \) belongs to \(W \), which is a contradiction to Lemma 2.6. Therefore \(X = \{v_4\} \). If \(v_4 \) is adjacent to either \(v_1 \) or \(v_3 \), say \(v_1 \), then \(r(v_4 \mid W) = r(v_{12} \mid W) = (1, 2, 3) \) in \(G(C_3) \), which is a contradiction and hence \(v_4 \) is adjacent to \(v_1 \) and \(v_3 \). But if \(\{v_4, v_5, v_3\} \) is a \(K_4 \), then \(r(v_4 \mid W) = r(v_{13} \mid W) = (2, 2, 2) \) in \(G(C_3) \), which is a contradiction. Therefore \(\{v_4, v_5, v_3\} \) is a \(K_4 \) and hence in this case, \(G \cong C_4 \).

Conversely, let \(G \cong P_3 \) or \(K_3 \) or \(K_4 \setminus \{e\} \) or \(K_4 \setminus C_3 \). Let \(W = \{v_1, v_2, v_3\} \) and \(v_1 v_2, v_3 v_3 \in E(G) \). Then \(W \) is a total resolving set of \(G(C_3) \).

Thus \(tr(G(C_3)) \leq 3 \). By Theorem 4.1, \(tr(G(C_3)) \geq 3 \) and hence \(tr(G(C_3)) = 3 \).

Theorem 4.3: Let \(G \) be a graph of order \(n \geq 3 \). Then \(tr(G(C_3)) = n \) if and only if each non support vertex is a complete vertex of degree 2.

Proof: Assume that \(tr(G(C_3)) = n \). Let \(V(G) = \{v_1, v_2, \ldots, v_n\} \). Let \(v_{ij} \) be the new vertex of the edge \(v_ivj \) in \(G(C_3) \). Then we claim that each non support vertex is a complete vertex of degree 2. Suppose not. Then we consider the following two cases.

Case-1: There exists a non support vertex \(v_i \) for some \(i \) such that \(d(v_i) \geq 3 \) in \(G \).

Then without loss of generality, let \(v_i \) be such vertex and \(N(v_i) = \{v, v_3, v_4, \ldots, v_{k+1}\} \), \(k \geq 3 \) in \(G \). Let \(W = \{v_2, v_3, v_4, \ldots, v_n\} \). Then for \(2 \leq i \neq j \leq n \), \(i - 1^{st} \) and \(j - 1^{st} \) coordinates of the representation of \(v_j \) are \(1 \), \(1^{st} \) and \(2^{nd} \) coordinates of the representation of \(v_3 \) are \(1 \), \(3^{rd} \) coordinate of \(v_4 \) is \(1 \) and \(2^{nd} \) coordinate of \(v_{13} \) is \(1 \) in \(G(C_3) \). Therefore each vertex of \(V(G(C_3)) \) has distinct representations. Since \(W \) has no isolates, \(tr(G(C_3)) \leq n - 1 \), which is a contradiction.

Case-2: There exists a non support vertex \(v_i \) for some \(i \) such that \(d(v_i) = 2 \) and \(v_i \) is not a complete vertex in \(G \).

Then without loss of generality, let \(v_i \) be such vertex in \(G \). Let \(N(v_i) = \{v_2, v_3\} \) and \(W = \{v_2, v_3, \ldots, v_n\} \). Then for \(2 \leq i \neq j \leq n \), \(i - 1^{st} \) and \(j - 1^{st} \) coordinates of the representation of \(v_j \) are \(1 \), \(1^{st} \) and \(2^{nd} \) coordinates of \(v_i \) are \(1 \), \(1^{st} \) and \(2^{nd} \) coordinates of \(v_{13} \) are \(1 \) in \(G(C_3) \). Thus each vertex of \(V(G(C_3)) \) has distinct representations. Since \(W \) has no isolates, \(tr(G(C_3)) \leq n - 1 \), which is a contradiction.

Hence each non support vertex is a complete vertex of degree 2.
Conversely, suppose that each non support vertex is a complete vertex of degree 2. By Theorem 4.1, \(\text{tr}(G(C_3)) \leq n \). Let \(W \) be a total resolving set for \(G(C_3) \). Let \(d(v_i) = 2 \), \(v_i \) is a complete non support vertex and \(N(v_i) = \{v_j, v_k\} \). Then \(d(v_i, v) = d(v_j, v) \) for all \(v \in V(G(C_3)) \setminus v_i, v_j \). Therefore \(v_i, v_j \in W \) and by Lemma 3.3, \(\text{tr}(G(C_3)) \geq p + s + s' = n \), where \(s' \) denote the number of non support vertices of \(G \). Thus \(\text{tr}(G(C_3)) \geq n \) and hence \(\text{tr}(G(C_3)) = n \).

ACKNOWLEDGEMENT

The research work of the second author is supported by the University Grants Commission, New Delhi through Basic Science Research Fellowship (vide Sanction No.F.7-201/2007 (BSRF)).

REFERENCES