RESTRICTIONS OF PRE A*-ALGEBRA FUNCTIONS

VIJAYABARATHI.S
Assistant Professor, SCSVMV, Enathur, Kanchipuram, India.

(Received On: 17-11-18; Revised & Accepted On: 12-12-18)

ABSTRACT
In this paper restriction of Pre A*-algebra function has been derived. Shannon expansion of Pre A*-algebra function is explained with an example. Theorems related to the restriction have been proved.

Key words: Restriction of Pre A*-algebra function, Shannon expansion

1. INTRODUCTION
In 1994, P. Koteswara Rao [1] first introduced the concept of A*-algebra \((A, \wedge, \vee, (-)^{-}) \).
In 2000, J. Venkateswara Rao [2] introduced the concept Pre A*-algebra \((A, \wedge, \vee, (-)^{-}) \) analogous to C-algebra as a reduct of A*-algebra. In [4] ternary operation on Pre-A* algebra have been proved and studied the properties. J. Venkateswara Rao [5] analyze the properties of PreA*-function. He defined implicants of Pre A*-algebra function[6].

2. PRELIMINARIES
Definition 2.1 [4]: An algebra \((A, \wedge, \vee, (-)^{-}) \) where A is non-empty set with \(1, \wedge, \vee \) are binary operations and \((-)^{-} \) is a unary operation satisfying

(a) \(x^{-} = x \), \(\forall x \in A \)
(b) \(x \wedge x = x \), \(\forall x \in A \)
(c) \(x \wedge y = y \wedge x \), \(\forall x, y \in A \)
(d) \((x \wedge y)^{-} = x^{-} \vee y^{-} \), \(\forall x, y \in A \)
(e) \(x \wedge (y \wedge z) = (x \wedge y) \wedge z \), \(\forall x, y, z \in A \)
(f) \(x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \), \(\forall x, y, z \in A \)
(g) \(x \wedge y = x \wedge (x^{-} \vee y^{-}) \), \(\forall x, y \in A \).

is called a Pre A*-algebra

Example 2.1[4]: \(3 = \{0, 1, 2\} \) with operations \(\wedge, \vee, (-)^{-} \) defined below is a Pre A*-algebra.

\[
\begin{array}{c|c|c|c|c|c|c|c}
\wedge & 0 & 1 & 2 & \vee & 0 & 1 & 2 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 \\
1 & 0 & 1 & 2 & 1 & 1 & 1 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\end{array}
\]

x	x^{-}	0	1	2
0 | 0 | 1 | 1 | 0
1 | 1 | 0 | 0 | 1
2 | 2 | 2 | 2 | 2

Corresponding Author: Vijayabarathi.S
Assistant Professor, SCSVMV, Enathur, Kanchipuram, India.
Lemma 2.2 [4]: Every Pre A*-algebra with 1 satisfies the following laws
(a) \(x \lor 1 = x \lor x' \)
(b) \(x \land 0 = x \land x' \)

Lemma 2.3 [4]: Every Pre A*-algebra with 1 satisfies the following laws.
(a) \(x \land (x' \lor x) = x \lor x' \)
(b) \((x \lor x') \land y = (x \land y) \lor (x' \land y) \)
(c) \((x \lor y) \land z = (x \land z) \lor (x' \land y \land z) \)

Definition 2.4 [4]: Let \(A \) be a Pre A*-algebra. An element \(x \in A \) is called central element of \(A \) if \(x \land x' = 1 \) and the set \(\{ x \in A / x \land x' = 1 \} \) of all central elements of \(A \) is called the centre of \(A \) and it is denoted by \(B(A) \).

Theorem 2.5 [4]: Let \(A \) be a Pre A*-algebra with 1, then \(B(A) \) is a Boolean algebra with the induced operations \(\land, \lor, (\cdot)' \)

Theorem 2.6 [4]: Let \(A \) is a Pre A*-algebra with 1. Then \(A \) has trivial centre if and only if \(A = \overline{A_o} \), for some Pre A*-algebra \(A_o \).

Lemma 2.7 [4]: Let \(A \) be a Pre A*-algebra with 1,
(a) If \(y \in B(A) \) then \(x \land x' \land y = x \lor x' \land \forall x \in A \)
(b) If \(x, y \in B(A) \) then \(x \land (x \lor y) = x \lor (x \land y) = x \)

Lemma 2.8 [4]: Let \(A \) be a Pre A*algebra with 1, 0 and let \(x, y \in A \)
(a) If \(x \lor y = 0 \), then \(x = y = 0 \)
(b) If \(x \lor y = 1 \), then \(x \lor x' = 1 \)

Theorem 2.9 [4]: Let \(A \) be a Pre A*-algebra with 1 and \(x, y \in A \), if \(x \land y = 0 \), \(x \lor y = 1 \), then \(y = x' \)

Definition 2.10[7]: A Pre A* -algebra function is said to be in disjunctive normal form in \(n \) variables \(x_1, x_2, x_3, \ldots, x_n \) if it can be written as join of terms of the type \(f_1(x_1) \land f_2(x_2) \land \ldots \land f_n(x_n) \) where \(f_i(x_i) = x_i' \) or \(x_i \) \(\forall i = 1 \) to \(n \) and no two terms are same. \(f_i(x_i) \land f_2(x_2) \land \ldots \land f_n(x_n) \) are called minterms or minimal polynomials.
Thus a minterm in \(n \) variables is a product of \(n \) literals in which each variable is represented by the variable itself or its complement.

Definition 2.11[7]: If a DNF contains all the possible minterms then it is complete DNF.

Definition 2.12[7]: A Pre A* -algebra function is said to be in conjunctive normal form in \(n \) variables \(x_1, x_2, x_3, \ldots, x_n \) if it can be written as meet of terms of the type \(f_1(x_1) \lor f_2(x_2) \lor \ldots \lor f_n(x_n) \) where \(f_i(x_i) = x_i \) or \(x_i' \) \(\forall i = 1 \) to \(n \) and no two terms are same. \(f_1(x_1) \lor f_2(x_2) \lor \ldots \lor f_n(x_n) \) are called maxterms or maximal polynomials

3. RESTRICTION OF PRE A*-ALGEBRA FUNCTION

If \(X_1 \) is any subset of \(X \), the restriction of function is the function \(f_{|X_1} \) from \(X_1 \) to \(Y \).

If \(f_{|X_1} \) is the restriction of \(f \), then \(f \) is the extension of \(f_{|X_1} \). Informally, a restriction of a function \(f \) is the result of trimming its domain.

Definition 3.1: Let \(f \) be a Pre A* -function on \(A^* \) and let \(k \in \{1, 2, \ldots, n\} \). We denote by \(f_{|X_1} = 2, f_{|X_1} = 1, \) and \(f_{|X_1} = 0 \) respectively, the Pre A* -function defined as follows:
for every \((\alpha_1, \alpha_2, \ldots, \alpha_{k-1}, \alpha_{k+1}, \ldots, \alpha_n) \in A^{n-1} \)
\(f_{|X_1} (\alpha_1, \alpha_2, \ldots, \alpha_{k-1}, \alpha_{k+1}, \ldots, \alpha_n) = f(2) \)
\[f_{k=1}(\alpha_1, \alpha_2 \ldots \alpha_{k-1}, \alpha_{k+1}, \ldots \alpha_n) = f(\alpha_1, \alpha_2 \ldots \alpha_{k-1}, 1, \alpha_{k+1}, \ldots \alpha_n) \]
\[f_{k=0}(\alpha_1, \alpha_2 \ldots \alpha_{k-1}, \alpha_{k+1}, \ldots \alpha_n) = f(\alpha_1, \alpha_2 \ldots \alpha_{k-1}, 0, \alpha_{k+1}, \ldots \alpha_n) \]

\[f_{k=2} \] is the restriction of \(f \) to \(f(2) \)
\[f_{k=1} \] is the restriction of \(f \) to \(f(1, \alpha_2 \ldots \alpha_{k-1}, \alpha_{k+1}, \ldots \alpha_n) \) in which \(\alpha_k = 1 \)
\[f_{k=0} \] is the restriction of \(f \) to \(f(0, \alpha_2 \ldots \alpha_{k-1}, \alpha_{k+1}, \ldots \alpha_n) \) in which \(\alpha_k = 0 \)

Even though \(f_{k=2}, f_{k=1}, \text{and } f_{k=0} \) are by definition, functions of \((n-1)\) variables, it is considered as functions on \(A^n \) rather than \(A^{n-1} \) for every \((\alpha_1, \alpha_2, \ldots \alpha_n) \in A^n \), we simply let
\[f_{k=2}(\alpha_1, \alpha_2 \ldots \alpha_{k-1}, \alpha_{k+1}, \ldots \alpha_n) = f(2) \]
\[f_{k=1}(\alpha_1, \alpha_2 \ldots \alpha_{k-1}, \alpha_{k+1}, \ldots \alpha_n) = f(\alpha_1, \alpha_2 \ldots \alpha_{k-1}, 1, \alpha_{k+1}, \ldots \alpha_n) \]
\[f_{k=0}(\alpha_1, \alpha_2 \ldots \alpha_{k-1}, \alpha_{k+1}, \ldots \alpha_n) = f(\alpha_1, \alpha_2 \ldots \alpha_{k-1}, 0, \alpha_{k+1}, \ldots \alpha_n) \]

Theorem 3.2: Let \(f \) be a Pre A*-function on \(A^n \). Let \(\psi \) be a representation of \(f \) and let \(k \in \{1, 2, \ldots, n\} \) Then the expression obtained by substituting the constant 0 or 1 or 2 for every occurrence of \(x_k \) in \(\psi \) represents \(f_{k=0} \) or \(f_{k=1} \) or \(f_{k=2} \).

Proof: This is an immediate consequence of above definition.

Example 3.3: Consider Pre A*-function
\[f = (\alpha \land \beta) \lor (\alpha \land \gamma) \lor (\beta \land \gamma) \]

We derive the following expressions for \(f_{k=2}, f_{k=1}, \text{and } f_{k=0} \)
\[f = (\alpha \land \beta) \lor (\alpha \land \gamma) \lor (\beta \land \gamma) \]
\[f_{k=2} = (2 \land \beta) \lor (2 \land \gamma) \lor (\beta \land \gamma) \]
\[f_{k=1} = (1 \land \beta) \lor (1 \land \gamma) \lor (\beta \land \gamma) \]
\[f_{k=0} = (0 \land \beta) \lor (0 \land \gamma) \lor (\beta \land \gamma) \]

Theorem 3.4: Let \(f \) be a Pre A*-function on \(A^n \) and let \(k \in \{1, 2, \ldots, n\} \).

Then \(f(\alpha_1, \alpha_2, \ldots \alpha_n) \equiv \alpha_k f_{k=2} \lor \alpha_k \neg f_{k=2} \lor \alpha_k f_{k=1} \lor \alpha_k \neg f_{k=1} \lor \alpha_k f_{k=0} \lor \alpha_k \neg f_{k=0} \) for all \((\alpha_1, \alpha_2, \ldots \alpha_n) \in A^n \).

Proof: This is immediate by substitute of the values \(\alpha_k = 2, \alpha_k = 1, \text{or } \alpha_k = 0 \)
\[f(\alpha_1, \alpha_2, \ldots \alpha_n) = 2 f_{k=2} \]
\[f(\alpha_1, \alpha_2, \ldots 0, \ldots \alpha_n) = f_{k=1} \]
\[f(\alpha_1, \alpha_2, \ldots 0. \alpha_n) = 0 f_{k=0} \]
\[f(\alpha_1, \alpha_2, \ldots \alpha_n) = 2 f_{k=2} \lor 2 f_{k=1} \lor 1 f_{k=1} \lor 0 f_{k=0} \]

Example 3.5: Consider the function \(f = (\alpha \land \beta) \lor (\alpha \land \gamma) \lor (\alpha \land \beta) \lor (\beta \land \gamma) \)
The expansion of \(f \) with respect to \(\alpha \) is \(\alpha f_{\beta=1 \alpha=1} \lor \alpha \neg f_{\beta=1 \alpha=0} \lor \alpha f_{\beta=1 \alpha=2} \lor \alpha \neg f_{\beta=1 \alpha=2} \)
\[f = (\alpha \land \beta) \lor (\alpha \land \gamma) \lor (\alpha \land \beta) \lor (\beta \land \gamma) \]
The expansion of \(f_{\beta=1} \) with respect to \(\alpha \) is

\[
\alpha f_{\beta=1, \alpha=1} \lor \alpha^c f_{\beta=1, \alpha=0} \lor \alpha f_{\beta=1, \alpha=0} \lor \alpha^c f_{\beta=1, \alpha=2} = 1(1) \lor 0(0) \lor 2(2) = 2
\]

The expansion of \(f_{\beta=0} \) with respect to \(\alpha \) is

\[
\alpha f_{\beta=0, \alpha=1} \lor \alpha^c f_{\beta=0, \alpha=0} \lor \alpha f_{\beta=0, \alpha=0} \lor \alpha^c f_{\beta=0, \alpha=2} = 1(1) \lor 0(0) \lor 2(2) = 2
\]

The expansion of \(f_{\beta=2} \) with respect to \(\alpha \) is

\[
\alpha f_{\beta=2, \alpha=1} \lor \alpha^c f_{\beta=2, \alpha=0} \lor \alpha f_{\beta=2, \alpha=0} \lor \alpha^c f_{\beta=2, \alpha=2} = 1(1) \lor 0(0) \lor 2(2) = 2
\]

Similarly, we can write the expansion for \(\beta = 2 \) with respect to \(\gamma \).

Note 3.6: The expansion \(\alpha f_{\beta=1, \alpha=1} \lor \alpha^c f_{\beta=1, \alpha=0} \lor \alpha f_{\beta=1, \alpha=0} \lor \alpha^c f_{\beta=1, \alpha=2} \) is called as Shannon expansion. By applying this expansion to a function and its restriction becomes 0 or 1 or 2 or a literal.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]