PART-II CHARACTERS OF NAGENDRAM Γ-SEMI SUB NEAR-FIELD SPACE OF A Γ-NEAR-FIELD SPACE OVER NEAR-FIELD

Dr. N V NAGENDRAM*

Professor of Mathematics,
Kakinada Institute of Technology & Science (K.I.T.S.),
Department of Humanities & Science (Mathematics),
Tirupathi (Vill.) Peddapuram (M), Divili 533 433,
East Godavari District. Andhra Pradesh. INDIA.

(Received On: 31-10-19; Revised & Accepted On: 21-02-20)

ABSTRACT

In this manuscript we prove that every element of a compact, connected Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field lies in some maximal torus of Nagendram Γ-semi sub near-field space. Suppose we know that exp : g → N is onto. Then, if g ∈ N, we see that g = exp X for some X ∈ g. Now, NX is an abelian subalgebra of g and therefore lies in a maximal abelian sub-algebra h. Then, exp h is a maximal torus in N containing g. To prove that exp is onto, we will appeal to familiar tools from Riemannian geometry.

Keywords: Invariant, Ad-invariant, Riemannian geometry, characters of complex irreducible representations of compact Nagendram Γ-semi sub near-field space, Γ-near-field space; Γ-Semi sub near-field space of Γ-near-field space; Semi near-field space of Γ-near-field space, Nagendram Γ-semi sub near-field space, Nagendram Γ-semi near-field space, closed, compact, connected Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field, orthogonality characters of Nagendram Γ-semi sub near-field space.

SECTION-1: INTRODUCTION AND PRELIMINARIES.

In this paper author introduced PART II characters of complex irreducible representations of compact Nagendram Γ-semi sub near-field space over near-field.

Lemma 1.1: Let N be a compact Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field. Then N has a bi-invariant Riemannian metric.

Proof: On Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field N, bi-invariant metrics correspond to Ad-invariant inner products on g: If g is a bi-invariant metric, g, on T[N is Ad-invariant. If g, is an Ad-invariant metric inner product on T[N, then its left translation is a bi-invariant metric. If N is compact, then T[N has an Ad-invariant inner product: take an arbitrary positive definite inner product and average it over N. This completes the proof of the Lemma.

Definition 1.2: A connection ∇ on a manifold M is an R-bilinear map ∇ : Γ(ΓM) × Γ(ΓM) and (X, Y) → ∇X Y such that
a. ∇ f X Y = f ∇X Y and
b. ∇X (fY) = (∇ X f) Y + f ∇X Y for any f ∈ C∞ (M) and X, Y ∈ Γ(ΓM).

Corresponding Author: Dr. N. V. Nagendram Professor of Mathematics, Kakinada Institute of Technology & Science, Tirupathi (v), Peddapuram(M), Divili 533 433, East Godavari District, Andhra Pradesh. India. E-mail: nvn220463@yahoo.co.in.
Theorem 1.3: Let \((M, g)\) be a Riemannian manifold. Then there is a unique connection \(\nabla = \nabla^g\) on \(M\) such that

\((a). \ X (g(Y, Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z) \) and \\
\((b). \nabla_X Y - \nabla_Y X = [X, Y] \).

Moreover,
\[2g(X, \nabla_{\nabla_Y Z}) = g([X, Y], Z) + g(Y, [X, Z]) - g([X, Z], Y) - g(X, [Y, Z]). \]

Theorem 1.4: Let \(M\) be a manifold with a connection \(\nabla\) and \(\gamma: (a, b) \rightarrow M\) a curve. Then there exists a unique \(N\) – linear map \(\frac{\nabla}{dt}: \Gamma(\gamma^* TM) \rightarrow \Gamma(\gamma^* TM)\) such that

\(1. \frac{d}{dt} (f \gamma) = \frac{df}{dt} \gamma + \int f \frac{\nabla}{dt} V \) for all \(f \in C^\infty(a, b)\) and \(V \in \Gamma(TM). \)

\(2. \) if \(X \in \Gamma(TM)\) then \(\frac{\nabla}{dt} (X \circ Y) = \nabla_Y X.\)

Definition 1.5: A curve \(\gamma: (a, b) \rightarrow M\) is a geodesic for a connection \(\nabla\) if \(\frac{d}{dt} \gamma = 0.\) Recall that if \(x \in M, v \in T_x M,\) then there is a unique geodesic \(\gamma\) such that \(\gamma(0) = x\) and \(\gamma'(0) = v.\)

Section-2: Bi-Invariant Characters of Nagendram Gamma Semi Sub near-field spaces of a Gamma near-field space over a Near-Field.

In this section, author present theorem on bi-invariant metric on characters of Nagendram Gamma semi sub near-field spaces of a Gamma near-field space over a near-field.

Theorem 2.1: Let \(N\) be Nagendram Gamma semi sub near-field spaces of a Gamma near-field space over a near-field, \(g\) be a bi-invariant metric on \(G\) and \(\nabla\) the corresponding connection. Then, for any left invariant vector fields \(Z\) and \(Y\)

\[\nabla Z Y = \frac{1}{2} [Z, Y]. \]

Proof:
Let \(X, Y, Z\) be left invariant Nagendram Gamma semi sub near-field spaces of a Gamma near-field space over a near-field. Then, \((g(X, Y))(a) = (g(X, Y))(I)\) for any \(a \in N.\)

Consequently, the map \(a \mapsto (g(X, Y))(a)\) is a constant function. Also since \(g\) is bi-invariant Nagendram Gamma semi sub near-field spaces of a Gamma near-field space over a near-field \(N,\) we see that \(g([X, Y], Z) + g(X, [Y, Z]) = 0.\)

These, two facts together, along with the formula for the connection in the above theorem show that \(2g(X, \nabla_Y Z) = g([X, Z], Y).\) Since, \(X\) is an arbitrary and the metric is non-degenerate, \(2\nabla_Y Z = [Z, Y].\) This completes the proof of the theorem.

Lemma 2.2: For any \(X \in g, a \in N, \gamma(t) = \exp tX\) is a geodesic. Moreover, all the geodesics are of this form.

Proof: If \(\gamma(t) = \exp tX\) is a geodesic, then \(\gamma(t) = (dL_a \exp tX) X(1) = X(\gamma(t)).\)

And so \(\frac{d}{dt} \gamma = \nabla_X X = \frac{1}{2}[X, X] = 0.\)

Thus, \(\gamma(t)\) is a geodesic. Moreover, for all \(a \in N\) and for all \(v \in T_a M\) there is \(X \in g\) such that \(X(a) = v.\) Therefore, \(\gamma(t) = \exp tX\) is a geodesic with \(\gamma(0) = a, \gamma'(0) = X(a) = v.\) This completes the proof of the theorem.

Theorem 2.2: If \((M, g)\) is a complete bi-invariant Nagendram Gamma semi sub near-field spaces of a Gamma near-field space over a near-field \(N,\) connected Riemannian manifold, then any two points can be joined by a geodesic.

Theorem 2.3: Let \(N\) be a compact, connected bi-invariant Nagendram Gamma semi sub near-field spaces of a Gamma near-field space over a near-field. Then, \(\exp: g \rightarrow N\) is onto.

Proof: Any point \(g \in N\) can be connected to \(1 \in N\) by a geodesic which is of the form \(t \mapsto \exp tX\) for some \(X \in g.\) Any element of a compact, connected bi-invariant Nagendram Gamma semi sub near-field spaces of a Gamma near-field space over a near-field lies in a maximal torus. This completes the proof of the theorem.
ACKNOWLEDGMENT

Dr N V Nagendram being a Professor is indebted to the referee for his various valuable comments leading to the improvement of the advanced research article in algebra of Mathematics. For the academic and financial year 2019-'20, this work was supported by our Hon’ble chairman Sri B. Srinivasa Rao, Kakinada Institute of Technology & Science (K.I.T.S.), R&D education Department Humanities & sciences (Mathematics), Divili 533 433. Andhra Pradesh INDIA.

REFERENCES

19. N V Nagendram research paper on "Near Left Almost Near-Fields (N-LA-NF)" communicated to for 2nd international conference by International Journal of Mathematical Sciences and Applications, IJMSA@ mindreader publications, New Delhi on 23-04-2012 also for publication.
20. N V Nagendram, T Radha Rani, Dr T V Pradeep Kumar and Dr Y V Reddy “A Generalized Near Fields and (m, n) Bi-Ideals over Noetherian regular Delta-near-rings (GNF-(m, n) BI-NR-delta-NR)”, published in an International Journal of Theoretical Mathematics and Applications (TMA),Greece, Athens, dated 08-04-2012.

24. N V Nagendram, Ch Padma, Dr T V Pradeep Kumar and Dr Y V Reddy "Ideal Comparability over Noetherian Regular Delta Near Rings(IC-NR-Delta-NR)" Published in International Journal of Advances in Algebra (IJAA, Jordan),ISSN 0973-6964 Vol:5,NO:1(2012), pp.43-53© Research India publications, Rohini, New Delhi.

32. N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy “On Structure Thoery and Planar of Noetherian Regular delta-Near-Rings (STPLNR-delta-NR)”, International Journal of Contemporary Mathematics, IJCM , accepted for 1st international conference conducted by IJMSA, New Delhi December 18,2011,pp.79-83, Copyright @ Mind Reader Publications and to be published in the month of Jan 2011.

33. N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy “On Matrix’s Maps over Planar of Noetherian Regular delta-Near-Rings (MMPLNR-delta-NR)”, International Journal of Contemporary Mathematics, IJCM, accepted for 1st international conference conducted by IJMSA, New Delhi December 18,2011,pp.203-211, Copyright @ Mind Reader Publications and to be published in the month of Jan 2011.

34. N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy “Some Fundamental Results on P- Regular delta-Near-Rings and their extensions (PNR-delta-NR)”, International Journal of Contemporary Mathematics ,IJCM,Jan-December 2011,Copyright@MindReader Publications,ISSN:0973-6298,vol.2,No.1-2,PP.81-85

37. N V Nagendram1, N Chandra Sekhara Rao2 "Optical Near field Mapping of Plasmonic Nano Prisms over Noetherian Regular Delta Near Fields (ONFMPN-NR-Delta-NR)" accepted for 2nd international Conference by International Journal of Mathematical Sciences and Applications, IJMSA @ mind reader publications, New Delhi going to conduct on 15 – 16 th December 2012 also for publication.

40. N V Nagendram “Amenability for dual concrete complete near-field spaces over a regular delta near-rings (ADC-NFS-R-δ-NR)" accepted for 3rd international Conference by International Journal of Mathematical Sciences and Applications, IJMSA @ mind reader publications, New Delhi going to conduct on 15 – 16 th December 2014 also for publication.

41. N V Nagendram “Characterization of near-field spaces over Baer-ideals" accepted for 4th international Conference by International Journal Conference of Mathematical Sciences and Applications, IJCMSA @ mind reader publications, New Delhi going to conduct on 19-20 th December 2015 at Asian Institute of Technology AIT, Klaung Lange 12120, Bangkok, Thailand.

57. N V Nagendram "Tensor product of a near-field space and sub near-field space over a near-field" published by International Journal of Mathematical Archive, IJMA, ISSN. 2229-5046, Vol.8, No.6, Pg. 8 – 14, 2017.

61. Dr. N V Nagendram "A Note on B1-Near-fields over R-delta-NR(B1-NFS-R-δ-NR)", Published by International Journal of Mathematical Archive, IJMA, ISSN. 2229-5046, Vol.6, No.8, Pg. 144 – 151, 2015.

64. Dr. N V Nagendram "Certain Near-field spaces are Near-fields(C-NFS-NF)", Published by International Journal of Mathematical Archive, IJMA, ISSN. 2229-5046, Vol.7, No.4, Pg. 1 – 7, 2016.
Dr N V Nagendram*/PART-II Characters of Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field/ IJMA- 11(3), March-2020.

68. Dr N V Nagendram, “Closed (or open) near-field spaces of commutative near-field space over a near-field”, 2016, Vol.7, No. 9, ISSN NO.2229 – 5046, Pg No.57 – 72.

73. Dr N V Nagendram, “Project on near-field spaces with sub near-field space over a near-field “, IJMA Oct, 2017, Vol.8, No.11, ISSN NO.2229 – 5046, Pg No. 7–15.

76. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “Fuzzy sub near-field spaces in Γ-near-field space over a near-field “, IJMA Nov, 2017, Vol.8, No. 12, ISSN NO.2229 – 5046, Pg No.188 – 196.

77. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “Gamma Semi Sub near-field spaces in gamma near-field space over a near-field PART I”, IJMA Jan, 2018, Vol. 9, No. 2, ISSN NO.2229 – 5046, Pg No.135 – 145.

78. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “Gamma Semi Sub near-field spaces in gamma near-field space over a near-field PART II”, IJMA 14 Feb, 2018, Vol. 9, No. 3, ISSN NO.2229 – 5046, Pg No.6–12.

80. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “Gamma Semi Sub near-field spaces in gamma near-field space over a near-field PART IV”, IJMA 09 Mar, 2018, Vol. 9, No. 4, ISSN NO.2229 – 5046, Pg No.1–14.

81. Dr N V Nagendram, “Nagendram Gamma-Semi Sub near-field spaces in gamma near-field space over a near-field “, IJMA 31st May, 2018, Vol. 9, No. 6, ISSN NO.2229 – 5046, Pg No.1–9.

82. Dr N V Nagendram, “Topological Nagendram Gamma-Semi Sub near-field spaces in gamma near-field space over a near-field “, IJMA 29 May, 2018, Vol. 9, No. 7, ISSN NO.2229 – 5046, Pg No.7 – 18.

84. Dr N V Nagendram “Representation of Nagendram Gamma-semi sub near-field spaces of a Gamma-near-field space over near-field” November 2018”, IJMA, Vol. 9, No. 11, ISSN NO.2229 – 5046, Pg No.46–54.

86. Dr N V Nagendram “Almost prime ideal in Nagendram Gamma semi sub near-field spaces of a Gamma-near-field space over near-field” 26th April, 2019, IJMA, Vol. 10, No. 5, ISSN NO.2229 – 5046, Pg No. .1 – 7.

88. Dr N V Nagendram “Part I Characters of Nagendram Gamma semi sub near-field spaces of a Gamma-near-field space over near-field” 22nd, August 2019, IJMA, Vol. 10, No. 8, ISSN NO.2229–5046, Pg No .11–17.

Source of support: Nil, Conflict of interest: None Declared.
[Copy right © 2020. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

© 2020, IJMA. All Rights Reserved 6