PART I KALANGI NON-ASSOCIATIVE Γ-SEMI SUB NEAR-FIELD SPACE OF A Γ-NEAR-FIELD SPACE OVER NEAR-FIELD

SRI. KALANGI HARISCHANDRA PRASAD*1
Author cum research Scholar,
Associate Professor, Department of Science & Humanities,
Sai Tirumala NVR College of Engineering
Jonnalagadda, Narasaraopeta, Guntur District, Andhra Pradesh. INDIA.

DR T V PRADEEP KUMAR2
Assistant Professor of Mathematics,
A N U College of Engineering & Technology,
Department of Mathematics, Acharya Nagarjuna University
Nambur, Nagarjuna Nagar 522 510. Guntur District. Andhra Pradesh. INDIA.

DR N V NAGENDRAM3
Professor of Mathematics,
Kakinada Institute of Technology & Science (K.I.T.S.),
Department of Humanities & Science (Mathematics)
Tirupathi (Vill.) Peddapuram (M), Divili 533 433
East Godavari District. Andhra Pradesh. INDIA.

(Received On: 28-02-20; Revised & Accepted On: 20-03-20)

ABSTRACT

In this manuscript we introduce new notions on PART I Kalangi non-associated Γ-semi sub near-field space of a Γ-near-field space over near-field, quasi non associative Γ-semi sub near-field space, K-quasi N -Γ-semi sub near-field space, quasi ideals, etc and concepts like PART I Kalangi quasi bipotent elements and several analogous properties done in case of Γ-near-field spaces.

Keywords: Non-associative Γ-semi sub near-field space, Kalangi-Γ-semi sub near-field space, Γ-semi sub near-field space of Γ-near-field space; Semi near-field space of Γ-near-field space, quasi Γ-semi sub near-field space, quasi non-associative Γ-semi near-field space.

SECTION 1: INTRODUCTION AND PRELIMINARIES

In this paper we together introduced several concepts and new notions in PART I Kalangi non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field like quasi non associative Γ-semi sub near-field space, K-quasi N -Γ-semi sub near-field space, quasi ideals, etc and concepts like PART I Kalinga quasi bipotent elements and several analogous properties done in case of Γ-near-field spaces.

Definition 1.1: Let N be a K-quasi non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field an element x is said to be quasi central if xy = yx for all y ∈ M; M ⊆ N is a Γ-near-field (or M ⊆ N and M is a Γ-semi near-field space).

Corresponding Author: Sri. Kalangi Harischandra Prasad, Research Scholar, Associative professor, Department of Science & Humanities(Mathematics), Sai Tirumala NVR engineering College, Jonnalagadda, Narasara Peta-522 601, Guntur District, Andhra Pradesh. INDIA. E-mail: hariprasadmaths@gmail.com.
Definition 1.2: Let N be a K-quasi non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field we say N is said to be Kalinga quasi non-associative sub-directly irreducible Γ-semi sub near-field space (K-quasi sub-directly irreducible non-associative Γ-semi sub near-field space) if the intersection of all non zero K-quasi ideals of N is non-zero.

Definition 1.3: Let N be a K-quasi non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field we say N is said to have Kalinga quasi intersection of factors property (K-quasi IFP) if $a, b \in N$, $ab = 0$ implies $amb = 0$ where $m \in M$, $M \subset N$ and M is a near-field (or $m \in M$, $M \subset N$, M is a non-associative Γ-semi sub near-field space.

Note 1.4: We can take $(nb) = (an)$ b in all cases it should vanish that is $anb = 0$.

Now we define the concept of Kalangi quasi divisibility and Kalangi divisibility.

Definition 1.5: Let N be a non-associative K-Γ-semi sub near-field space of a Γ-near-field space over near-field we say N is Kalangi weakly divisible (K-weakly divisible) if for all $x, y \in N$ there exists a $z \in P$; $P \subset N$ where P is an associative Γ-semi sub near-field space of a Γ-near-field space over near-field or P is a near-field such that $xz = y$ or $zx = y$.

Definition 1.6: Let N be a non-associative K-Γ-semi near-field space of a Γ-near-field space over near-field we say N is Kalangi weakly divisible (K-weakly divisible) if for all $x, y \in N$ there exists a $z \in P$; $P \subset N$ where P is an associative Γ-semi near-field space of a Γ-near-field space over near-field or P is a near-field such that $xz = y$ or $zx = y$.

Definition 1.7: Let N be a K-quasi sub near-field space (K-Γ-semi sub near-field spaces) we say N is said to be a Kalinga strongly prime (K-strongly prime) I if for each $a \in N \setminus \{0\}$ there exists a finite K-Γ-semi sub near-field space F such that $Fx \neq 0$ for all $x \in P \setminus \{0\}$, $P \subset N$; P is a associative Γ-semi sub near-field space/ P is a associative Γ-semi near-field space.

In case N is K-Γ-semi sub near-field space II (III or IV) we say N is a Kalinga strong prime II (III or IV) (K-strong prime II(III or IV)) if for each $a \in N \setminus \{0\}$ there exists a finite K-Γ-semi sub near-field space F such that $Fx \neq 0$ for all $x \in P \setminus \{0\}$, $P \subset N$; P is a associative Γ-semi sub near-field space/ P is a associative Γ-semi near-field space.

Definition 1.9: Let N be a non associative right near-field space and A an K-ideal or a K-left ideal of N, we define three properties as follows

(i) A is kalangi equi-prime (K-equi-prime) if for any $a, x, y \in N$ such that $a (nx) – a(ny) \in A \forall \in N$ or

$(an)x – (an)y \in Y$ we have $a \in A$ or $x – y \in A$.

(ii) A is Kalangi strongly semi prime (K-strongly semi prime) if for each a finite subset F of N such that if $x, y \in N$ and (af) $x – (af) y \in A$ or

$y \in A$ and $a (fx) – a (fy) \in A$ or

$(af) x – a (fy) \in A$ or

A is a K-ideal or a K-left ideal of N such that $x – y \in A$.

(iii) A is Kalangi completely equi prime (K-completely equi prime) if $a \in N \setminus A$ and $ax – ay \in A$ imply $x – y \in A$.

Definition 1.10: Let Q be a non empty subset of a K-right Γ-semi sub near-field space of a Γ-near-field space over near-field N which is non-associative. Define left and right Kalangi polar subsets (K-polar subsets) of N by

$SL(Q) = \{x \in Q | x(NQ) = 0 \}$ or

and $SR(Q) = \{y / (qN) y = 0 \}$ or

$q(Ny) = 0$ for all $q \in Q$.

Define left and right Kalangi polar subsets (K-polar subsets) of N by

$SL(Q) = \{x \in Q | x(NQ) = 0 \}$ or

and $SR(Q) = \{y / (qN) y = 0 \}$ or

$q(Ny) = 0$ for all $q \in Q$.

Suppose, $SQ_L(N)$ is the set of Q-left polar subsets of N and $SQ_R(N)$ is the set of Q-right polar subsets of N one need to test whether $SQ_L(N)$ and $SQ_R(N)$ are complete bounded lattices.

Definition 1.11: I, II and III three levels of Kalangi Γ-semi sub pseudo near-field space(K-Γ-SSPNFS). Let Q be a Γ-semi sub pseudo near-field space (Γ-SSPNFS) of a Γ-near-field space over near-field N we say Q is a Kalinga Γ-SSPNFS I (K-Γ-SSPNFS I) if Q has a proper subset $T \subset Q$ such that T is a Γ-semi sub near-field space. Kalangi Γ-semi sub pseudo near-field space II (K-Γ-SSPNFS II) if Q has proper subset $M \subset Q$ such that M is a Γ-semi sub near-field space. Kalangi Γ-semi sub pseudo near-field space III (K-Γ-SSPNFS III) if Q has a proper $W \subset Q$.

© 2020, IJMA. All Rights Reserved
such that \((W, \oplus, \otimes)\) is a \(\Gamma\)-semi near-field space. Thus we have three levels (I, II and III) of \(K\)-\(\Gamma\)-SSPNFS near-field spaces over a near-field \(N\). A Kalangi \(\Gamma\)-SSPNFS \(\Gamma\)-semi near-field space (\(K\)-\(\Gamma\)-SSPNFS) is defined as a proper subset \(U\) of \(Q\) such that \((U, \oplus, \otimes)\) is a \(K\)-\(\Gamma\)-SSPNFS \(\Gamma\)-semi near-field space.

Definition 1.12: Let \((Q, \oplus, \otimes)\) be a \(\Gamma\)-semi sub pseudo near-field space (\(\Gamma\)-SSPNFS) of a \(\Gamma\)-near-field space over near-field. A proper subset \(I\) of \(Q\) is called a Kalangi \(\Gamma\)-semi sub pseudo near-field space ideal (\(K\)-\(\Gamma\)-SSPNFS-ideal) if

- a. for all \(p, q \in I, p \oplus q \in I\)
- b. \(0 \in I\)
- c. for all \(p \in I\) and \(r \in P\) we have \(p \otimes r \in I\) or \(r \otimes p \in I\).
- d. \(I\) is a \(K\)-\(\Gamma\)-SSPNFS, \(\Gamma\)-semi near-field space.

Definition 1.13: Let \((N, \oplus, \otimes)\) and \((N_1, \oplus, \otimes)\) be any two \(K\)-\(\Gamma\)-semi sub pseudo near-field spaces (\(\Gamma\)-SSPNFS) of a \(\Gamma\)-near-field space over near-field. \(M\) is said to be a Kalangi quasi \(\Gamma\)-semi sub pseudo near-field space (\(K\)-\(\Gamma\)-SSPNFS) if and only if \(M\) is a \(K\)-\(\Gamma\)-SSPNFS \(\Gamma\)-semi near-field space.

Definition 1.14: Let \((N, \oplus, \otimes)\) be a \(\Gamma\)-semi sub pseudo near-field space (\(\Gamma\)-SSPNFS) of a \(\Gamma\)-near-field space over near-field. \(M\) is said to be a Kalangi quasi \(\Gamma\)-semi sub pseudo near-field space (\(K\)-\(\Gamma\)-SSPNFS) if and only if \(M\) is a \(K\)-\(\Gamma\)-SSPNFS \(\Gamma\)-semi near-field space.

SECTION 2: MAIN RESULT ON KALANGI \(-\)QUASI GAMMA SEMI PSEUDO SUB NEAR-FIELD SPACES OF A GAMMA NEAR-FIELD SPACE OVER A NEAR-FIELD.

In this section, author present theorem as main result on Kalangi quasi Gamma semi pseudo sub near-field spaces of a Gamma near-field space over near-field.

Now we proceed on to define Kalangi right quasi regular element. We just recall that an element \(x \in N\), \(N\) is a Gamma semi pseudo sub near-field space said to be the right quasi regular if there exist \(y \in N\) such that \(x \circ y = x + y - xy = 0\) and left quasi regular if there exist \(y \in N\) such that \(y \circ x = 0 = y' + x - yx\).

The study of the quasi regular concept happens to be an interesting study in case of near-field spaces and semi near-field spaces.

Quasi regular if it is right and left quasi regular simultaneously. We say an element \(x \in N\) is Kalangi right quasi regular (K-right quasi regular) if there exist \(y\) and \(z \in N\) such that \(x \circ y = x + y - xy = 0\) and \(z \circ y = y + z - yz = 0\) but \(y \circ z = y + z - yz \neq 0\) and \(z \circ y = y + z - yz \neq 0\).

Similarly we define Kalangi left quasi regular (K-left quasi regular) and \(x\) will be Kalangi quasi regular (K-quasi regular) if it is simultaneously K-right quasi regular and K-left quasi regular, that is of Kalangi quasi Gamma semi pseudo sub near-field spaces of a Gamma near-field space over a near-field.

If we define K-non-associative \(\Gamma\)-semi pseudo sub near-field space of a \(\Gamma\)-near-field space over near-field (K-quasi \(\Gamma\)-semi pseudo sub near-field space) \(N\) then we have main interesting result out of several results below.

Theorem 2.1: Let \(N\) be a Kalangi quasi \(-\)\(\Gamma\)-semi pseudo sub near-field space of a \(\Gamma\)-near-field space over near-field (K-quasi \(\Gamma\)-semi pseudo sub near-field space) having a proper subset \(P\) of \(N\) to be a commutative near-field space with unit and of a characteristic 0. \(L\) any loop of finite order. Then the near loop near-field space \(NL\) has a right quasi regular element \(x = \sum \alpha_i m_i (m_i \in L) \alpha_i \in P \subset N\) is right quasi regular then \(\sum \alpha_i \neq 1\).

Proof: Let \(y = \sum \beta_i h_i\) where \(\beta_i \in P\) and \(h_i \in L\) be the right quasi inverse of \(x\) then \(x + y - xy = 0\)

\[\text{i.e., } \sum \alpha_i m_i - \sum \beta_i h_i - (xy) = 0.\]

Equating the coefficients of the like terms and adding these coefficients we get,

\[\sum \alpha_i + \sum \beta_i = \sum \alpha_i \sum \beta_i = 0. \text{ or } \sum \alpha_i - \sum \beta_i = \sum \alpha_i \sum \beta_i = 0.\]

Now if \(\sum \alpha_i = 1\) then \(\sum \alpha_i = 0\) a contradiction. Hence \(\sum \alpha_i \neq 0\). This completes the proof of the theorem.

Example 2.2: Let \(L\) be any finite loop, \(N = Z_7 \times Z_7\) be K-mixed direct product of the Kalangi quasi \(-\)\(\Gamma\)-semi pseudo sub near-field space of a \(\Gamma\)-near-field space over near-field (K-quasi \(\Gamma\)-semi pseudo sub near-field space) \(Z_7\) and the prime field of characterize 7, \(Z_7\), \(N\) is K- quasi \(-\)\(\Gamma\)-semi pseudo sub near-field space, \(NL\) is the near loop near-field of the loop \(L\) over the near-field space \(N\). If \(x \in S (J (Z_7L))\).
Definition 2.3: Let $N = N_1 \times N_2$ where N_i is a Kalangi quasi-Γ-semi pseudo sub near-field space of a Γ-near-field space over near-field space of N_i (K-quasi Γ-semi pseudo sub near-field space) of characterize 0 and N_2 is any quasi-Γ-semi pseudo sub near-field space of a Γ-near-field space over near-field of the near loop quasi-Γ-semi pseudo sub near-field space of a Γ-near-field space over near-field of the loop L over the quasi-Γ-semi pseudo sub near-field space of a Γ-near-field space N.

Definition 2.4: $QJ(Q)$ said to be the Kalangi Jacobson radical (K-Jacobson radical) of N if $Q \subseteq NL$ is a non-associative quasi-Γ-semi pseudo sub near-field space of a Γ-near-field space and $J(Q)$ denoted the usual Jacobson radical of the non-associative quasi-Γ-semi pseudo sub near-field space of a Γ-near-field space Q.

Example 2.5: Let $N = Z \times Z_{18}$ be the mixed direct product of the Kalangi quasi-Γ-semi pseudo sub near-field space of a Γ-near-field space over near-field (K-quasi Γ-semi pseudo sub near-field space) Z and the semi pseudo sub near-field space Z_{18} any finite loop, NL the near loop of the loop L over the Kalangi quasi-Γ-semi pseudo sub near-field space N, clearly $ZL \subseteq NL$ and ZL is a non-associative Kalangi quasi-Γ-semi pseudo sub near-field space N. If $x = \sum \alpha_i h_i \in ZL$ such that $\sum \alpha_i \neq 0$ then $x \notin QJ(ZL)$. It is left for the scholar or reader to verify, as the conclusion derived is straightforward.

Theorem 2.6: Let $N = Z_2 \times Z_{15}$ where Z_2 is the prime Kalangi quasi-Γ-semi pseudo sub near-field space of a Γ-near-field space over near-field (K-quasi Γ-semi pseudo sub near-field space) Z and Z_{15} is a Γ-semi pseudo sub near-field space over near-field. Let L be any loop, NL be the near loop Kalangi quasi-Γ-semi pseudo sub near-field space. If $x \in Z_2 L \times \{0\} \subseteq (Z_2 \times Z_{15})$; L is right quasi regular Kalangi quasi-Γ-semi pseudo sub near-field space then $|\text{supp } x|$ is an even number.

Proof: The proof is obvious and easily obtained by simple calculations.

ACKNOWLEDGMENT

It is great and immense pleasure to me being a Professor Dr N V Nagendram, to promote Sri. Kalangi Harischandra Prasad research scholar as an author under the guidance of mine and as well as Harischandra Prasad’s guide Dr T V Pradeep Kumar, ANU from this article we three of us together studied and introduced the contents of advanced research results on PART I Kalangi non-associative Γ-semi pseudo sub near-field space over near-field space of a Γ-near-field space over near-field of the quasi-Γ-semi pseudo sub near-field space of a Γ-near-field space N. Clearly $ZL \subseteq NL$ and ZL is a non-associative Kalangi quasi-Γ-semi pseudo sub near-field space N. If $x = \sum \alpha_i h_i \in ZL$ such that $\sum \alpha_i \neq 0$ then $x \notin QJ(ZL)$. It is left for the scholar or reader to verify, as the conclusion derived is straightforward.

REFERENCES

10. K H Prasad, Dr T V Pradeep Kumar, Dr N V Nagendram, Kalangi non-associative Γ-semi sub near field space of a Γ-near-field space over near-field, submitted to IJMA, 24 February 2020.

Source of support: Nil, Conflict of interest: None Declared.

[Copyright © 2020. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]