ZERO-FREE REGIONS FOR POLYNOMIALS WITH SPECIAL COMPLEX COEFFICIENTS

P. RAMULU*1, G. L. REDDY2 AND C. GANGADHAR2

1*Department of Mathematics,
M. V. S Govt. Arts & Science College (A), Mahabubnagar - 509001, Telangana, India.

2Department of Mathematics and Statistics,
University of Hyderabad, Gachibowli - 500046, Telangana, India.

(Received On: 10-03-20; Revised & Accepted On: 11-04-20)

ABSTRACT

In this paper we can extend the well-known result Eneström-Kakeya theorem by relaxing the hypothesis in several ways and obtain zero-free regions for polynomials with special complex coefficients and thereby present some interesting generalizations and extensions of the Eneström-Kakeya Theorem.

Mathematics Subject Classification: 30C10, 30C15.

Keywords: Zeros of polynomial, Polar Derivatives, Eneström-Kakeya theorem.

1. INTRODUCTION

The well-known Results Eneström-Kakeya theorem [2, 4] in theory of the distribution of zeros of polynomials is the following.

Theorem 1.1: Let \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) such that \(0 < a_0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \) then all the zeros of \(P(z) \) lie in \(|z| \leq 1 \).

Applying the above result to the polynomial \(z^n P\left(\frac{1}{z}\right) \) we get the following result:

Theorem 1.2: If \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) such that \(0 < a_n \leq a_{n-1} \leq a_{n-2} \leq \ldots \leq a_0 \) then \(P(z) \) does not vanish in \(|z| < 1 \).

In the literature [1, 3, 5-9], there exist several extensions and generalizations of the Eneström-Kakeya Theorem. Recently B. A. Zargar [11] proved the following results:

Theorem 1.3: If \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) such that for some \(k \geq 1 \), \(0 < a_n \leq a_{n-1} \leq a_{n-2} \leq \ldots \leq a_0 \) then \(P(z) \) does not vanish in the disk \(|z| < \frac{1}{2^{k-1}} \).

Theorem 1.4: If \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) such that for some real number \(\rho \geq 0 \)
\[0 < a_0 \leq a_1 \leq a_2 \leq \ldots \leq a_{n-1} \leq a_n + \rho, \]
then \(P(z) \) does not vanish in the disk \(|z| < \frac{1}{2(ka_n + \rho) + a_n} \).

The following results due to P. Ramulu [10].

Theorem 1.5: Let \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) with real coefficients such that for some \(k \geq 1 \)
\[\rho \geq 0, \quad a_m \neq 0, \quad a_n - \rho \leq a_{n-1} \leq \ldots \leq a_{m+1} \leq ka_m \geq a_{m-1} \geq \ldots \geq a_0 \geq a_0 \]
then all the zeros of \(P(z) \) does not vanish in the disk \(|z| < \frac{1}{2(ka_n + a_m)} \).

Corresponding Author: P. Ramulu*1, 1*Department of Mathematics,
M. V. S Govt. Arts & Science College (A), Mahabubnagar - 509001, Telangana, India.
Theorem 1.6: Let \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) with real coefficients such that for some \(0 < r \leq 1, \rho \geq 0, a_m \neq 0, a_i + \rho \geq a_{n-1} \geq \ldots \geq a_{m+1} \geq ra_m \leq a_{m-1} \leq \ldots \leq a_i \leq a_0 \) then all the zeros of \(P(z) \) does not vanish in the disk
\[
|z| < \frac{|a_0|}{a_0 + 2|a| - 2r(a_0 + |a|)}.
\]

In this paper we give generalizations of the above mentioned results. In fact, we prove the following results.

2. MAIN RESULTS

Theorem 2.1: Let \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) with \(Re(\alpha_i) = a_i \) and \(Im(\alpha_i) = b_i \) such that for some \(k \geq 1, \xi \geq 0, a_m \neq 0, a_i - \xi \leq a_{n-1} \leq \ldots \leq a_{m+1} \leq k a_m \leq a_{m-1} \leq \ldots \leq a_1 \leq a_0 \) and for some \(t \geq 1, \eta \geq 0, b_m \neq 0, b_n - \eta \leq b_{n-1} \leq \ldots \leq b_{m+1} \leq tb_m \geq b_{m-1} \leq \ldots \geq b_1 \geq b_0 \), then all the zeros of \(P(z) \) does not vanish in the disk
\[
|z| < \frac{|a_0|}{2(k|a_m + a_n| + t(|b_m + b_n|) - |a_m| - |b_m| + \xi + \eta) + |a_n| + |b_n| - (a_0 + b_0 + a_n + b_n)}.
\]

Corollary 2.2: Let \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) with \(Re(\alpha_i) = a_i \) and \(Im(\alpha_i) = b_i \) such that for some \(k \geq 1, \xi \geq 0, a_m \neq 0, 0 \leq a_n - \xi \leq a_{n-1} \leq \ldots \leq a_{m+1} \leq k a_m \geq a_{m-1} \geq \ldots \geq a_1 \geq a_0 > 0 \) and \(t \geq 1, \eta \geq 0, b_m \neq 0, 0 < b_n - \eta \leq b_{n-1} \leq \ldots \leq b_{m+1} \leq tb_m \geq b_{m-1} \leq \ldots \geq b_1 \geq b_0 > 0 \), then all the zeros of \(P(z) \) does not vanish in the disk
\[
|z| < \frac{|a_0|}{2[(2k - 1)a_m + (2t - 1)b_m + \xi + \eta] - (a_0 + b_0)}.
\]

Corollary 2.3: Let \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) with \(Re(\alpha_i) = a_i \) and \(Im(\alpha_i) = b_i \) such that for some \(k \geq 1, \xi \geq 0, a_m \neq 0, a_n - \xi \leq a_{n-1} \leq \ldots \leq a_{m+1} \leq k a_m \geq a_{m-1} \geq \ldots \geq a_1 \geq a_0 \) and \(t \geq 1, \eta \geq 0, b_m \neq 0, b_n - \eta \leq b_{n-1} \leq \ldots \leq b_{m+1} \leq tb_m \geq b_{m-1} \leq \ldots \geq b_1 \geq b_0 \), then all the zeros of \(P(z) \) does not vanish in the disk
\[
|z| < \frac{|a_0|}{2(k|a_m + a_n| + b_m - |a_m| + \xi) + |a_n| + |b_n| - (a_0 + b_0 + a_n + b_n)}.
\]

Corollary 2.4: Let \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) with \(Re(\alpha_i) = a_i \) and \(Im(\alpha_i) = b_i \) such that for some \(k \geq 1, \xi \geq 0, a_m \neq 0, a_n - \xi \leq a_{n-1} \leq \ldots \leq a_{m+1} \leq k a_m \geq a_{m-1} \geq \ldots \geq a_1 \geq a_0 \) and \(t \geq 1, \eta \geq 0, b_m \neq 0, b_n - \eta \leq b_{n-1} \leq \ldots \leq b_{m+1} \leq tb_m \geq b_{m-1} \leq \ldots \geq b_1 \geq b_0 \), then all the zeros of \(P(z) \) does not vanish in the disk
\[
|z| < \frac{|a_0|}{2(a_m + t(|b_m| + b_n) - |b_m| + \eta) + |a_n| + |b_n| - (a_0 + b_0 + a_n + b_n)}.
\]

Corollary 2.5: Let \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) with \(Re(\alpha_i) = a_i \) and \(Im(\alpha_i) = b_i \) such that for some \(k \geq 1, \xi \geq 0, a_m \neq 0, a_n - \xi \leq a_{n-1} \leq \ldots \leq a_{m+1} \leq k a_m \geq a_{m-1} \geq \ldots \geq a_1 \geq a_0 \) and \(t \geq 1, \eta \geq 0, b_m \neq 0, b_n - \eta \leq b_{n-1} \leq \ldots \leq b_{m+1} \leq kb_m \geq b_{m-1} \leq \ldots \geq b_1 \geq b_0 \), then all the zeros of \(P(z) \) does not vanish in the disk
\[
|z| < \frac{|a_0|}{2(k|a_m + a_n + b_m| - |a_m| - |b_m| + \eta) + |a_n| + |b_n| - (a_0 + b_0 + a_n + b_n)}.
\]

Corollary 2.6: Let \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) with \(Re(\alpha_i) = a_i \) and \(Im(\alpha_i) = b_i \) such that for some \(a_n - \xi \leq a_{n-1} \leq \ldots \leq a_{m+1} \leq a_m \geq a_{m-1} \leq \ldots \leq a_1 \geq a_0 \) and \(t \geq 1, \eta \geq 0, b_m \neq 0, b_n - \eta \leq b_{n-1} \leq \ldots \leq b_{m+1} \leq b_m \geq b_{m-1} \leq \ldots \geq b_1 \geq b_0 \), then all the zeros of \(P(z) \) does not vanish in the disk
\[
|z| < \frac{|a_0|}{2(a_m + b_m) + |a_n| + |b_n| - (a_0 + b_0 + a_n + b_n)}.
\]

Corollary 2.7: Let \(P(z) = \sum_{i=0}^{n} a_i z^i \) be a polynomial of degree \(n \) with \(Re(\alpha_i) = a_i \) and \(Im(\alpha_i) = b_i \) such that for some \(0 < a_n - \xi \leq a_{n-1} \leq \ldots \leq a_{m+1} \leq a_m \geq a_{m-1} \leq \ldots \leq a_1 \geq a_0 \) and \(t \geq 1, \eta \geq 0, b_m \neq 0, b_n - \eta \leq b_{n-1} \leq \ldots \leq b_{m+1} \leq b_m \geq b_{m-1} \leq \ldots \geq b_1 \geq b_0 > 0 \), then all the zeros of \(P(z) \) does not vanish in the disk
\[
|z| < \frac{|a_0|}{2[a_m - b_m] - (a_0 + b_0)}.
\]

Remark 2.8: By taking \(a_i > 0 \) and \(b_i > 0 \) for \(i = 0,1,2,\ldots,n \) in Theorem 2.1, it reduces to Corollary 2.2.

Remark 2.9: By taking \(\eta = 0 \) and \(t = 1 \) in Theorem 2.1, it reduces to Corollary 2.3.

Remark 2.10: By taking \(\xi = 0 \) and \(k = 1 \) in Theorem 2.1, it reduces to Corollary 2.4
Remark 2.11: By taking \(\eta = \xi \) and \(t = k \) in Theorem 2.1, it reduces to Corollary 2.5.

Remark 2.12: By taking \(\eta = 0 \) and \(k = t = 1 \) in Theorem 2.1, it reduces to Corollary 2.6.

Remark 2.13: By taking \(\eta = 0, k = t = 1 \) and \(a_i > 0, b_i > 0 \) for \(i = 0, 1, 2, \ldots, n \), in Theorem 2.1, it reduces to Corollary 2.7.

Remark 2.14: By taking \(b_i = 0 \) and \(\rho = \rho \) in Theorem 1, it reduces to Theorem 1.5.

Theorem 2.15: Let \(P(z) = \sum_{i=0}^{n} a_{i} z^{i} \) be a polynomial of degree \(n \) with \(\text{Re}(a_i) = a_i \) and \(\text{Im}(a_i) = b_i \) such that for some \(0 < \tau \leq 1, k \geq 1, \xi \geq 0, a_n \neq 0, a_n + \xi \geq a_{n-1} \geq \ldots \geq a_{m+1} \geq \tau a_m \leq a_{m-1} \leq \ldots \leq a_k \leq k a_0 \) and for some \(0 < \mu \leq 1, t \geq 1, \eta \geq 0, b_m \neq 0, b_n + \eta \geq b_{n-1} \geq \ldots \geq b_{m+1} \geq \mu b_m \leq b_{m-1} \leq \ldots \leq b_t \leq t b_0 \), then all the zeros of \(P(z) \) does not vanish in the disk

\[
|z| < \frac{|a_0|}{k(|a_0| + |a_0| + \tau(|b_0| + b_0) + X + |a_n| + |b_n| + a_n + b_n - (|a_0| + |b_0|))}.
\]

where \(X = 2(|a_m| + |b_m| + \xi + \eta - \tau(|a_m| + a_m) - \mu(|b_m| + b_m)) \).

Corollary 2.16: Let \(P(z) = \sum_{i=0}^{n} a_{i} z^{i} \) be a polynomial of degree \(n \) with \(\text{Re}(a_i) = a_i \) and \(\text{Im}(a_i) = b_i \) such that for some \(0 < \tau \leq 1, k \geq 1, \xi \geq 0, a_n \neq 0, a_n + \xi \geq a_{n-1} \geq \ldots \geq a_{m+1} \geq \tau a_m \leq a_{m-1} \leq \ldots \leq a_k \leq k a_0 \) and for some \(0 < \mu \leq 1, t \geq 1, \eta \geq 0, b_m \neq 0, b_n + \eta \geq b_{n-1} \geq \ldots \geq b_{m+1} \geq \mu b_m \leq b_{m-1} \leq \ldots \leq b_t \leq t b_0 \), then all the zeros of \(P(z) \) does not vanish in the disk

\[
|z| < \frac{|a_0|}{2(k a_0 + t b_0 - \tau a_m - \mu b_m + a_n + b_n + \xi + \eta) + (a_m + b_m - a_0 - b_0)}.
\]

Corollary 2.17: Let \(P(z) = \sum_{i=0}^{n} a_{i} z^{i} \) be a polynomial of degree \(n \) with \(\text{Re}(a_i) = a_i \) and \(\text{Im}(a_i) = b_i \) such that for some \(0 < \tau \leq 1, k \geq 1, \xi \geq 0, a_n \neq 0, a_n + \xi \geq a_{n-1} \geq \ldots \geq a_{m+1} \geq \tau a_m \leq a_{m-1} \leq \ldots \leq a_k \leq k a_0 \) and for some \(b_n \geq b_{n-1} \geq \ldots \geq b_{m+1} \geq b_m \leq b_{m-1} \leq \ldots \leq b_t \leq t b_0 \), then all the zeros of \(P(z) \) does not vanish in the disk

\[
|z| < \frac{|a_0|}{2(|b_m| + \eta - \mu(|b_m| + b_m)) + |a_n| + |b_n| + a_n + b_n - |a_0|}.
\]

Corollary 2.18: Let \(P(z) = \sum_{i=0}^{n} a_{i} z^{i} \) be a polynomial of degree \(n \) with \(\text{Re}(a_i) = a_i \) and \(\text{Im}(a_i) = b_i \) such that for some \(a_n \geq a_{n-1} \geq \ldots \geq a_{m+1} \geq a_m \leq a_{m-1} \leq \ldots \leq a_k \) and for some \(0 < \mu \leq 1, t \geq 1, \eta \geq 0, b_m \neq 0, b_n + \eta \geq b_{n-1} \geq \ldots \geq b_{m+1} \geq \mu b_m \leq b_{m-1} \leq \ldots \leq b_t \leq t b_0 \), then all the zeros of \(P(z) \) does not vanish in the disk

\[
|z| < \frac{|a_0|}{2(|b_m| + \eta - \mu(|b_m| + b_m)) + |a_n| + |b_n| + a_n + b_n - |a_0|}.
\]

Corollary 2.19: Let \(P(z) = \sum_{i=0}^{n} a_{i} z^{i} \) be a polynomial of degree \(n \) with \(\text{Re}(a_i) = a_i \) and \(\text{Im}(a_i) = b_i \) such that for some \(0 < \tau \leq 1, k \geq 1, \xi \geq 0, a_n \neq 0, a_n + \xi \geq a_{n-1} \geq \ldots \geq a_{m+1} \geq \tau a_m \leq a_{m-1} \leq \ldots \leq a_k \) and for some \(b_n \neq 0, b_n + \xi \geq b_{n-1} \geq \ldots \geq b_{m+1} \geq b_m \leq b_{m-1} \leq \ldots \leq b_t \leq t b_0 \), then all the zeros of \(P(z) \) does not vanish in the disk

\[
|z| < \frac{|a_0|}{k(|a_0| + |b_0| + a_0 + b_0) + |a_n| + |b_n| + a_n + b_n - (|a_0| + |b_0|))}.
\]

Corollary 2.20: Let \(P(z) = \sum_{i=0}^{n} a_{i} z^{i} \) be a polynomial of degree \(n \) with \(\text{Re}(a_i) = a_i \) and \(\text{Im}(a_i) = b_i \) such that for some \(a_n \geq a_{n-1} \geq \ldots \geq a_{m+1} \geq a_m \leq a_{m-1} \leq \ldots \leq a_k \) and for some \(b_n \geq b_{n-1} \geq \ldots \geq b_{m+1} \geq b_m \leq b_{m-1} \leq \ldots \leq b_t \leq t b_0 \), then all the zeros of \(P(z) \) does not vanish in the disk

\[
|z| < \frac{|a_0|}{(a_0 + b_0) - (a_n + b_n) + |a_n| + |b_n| + 2(a_n + b_n)}.
\]
Remark 2.22: By taking $a_i > 0$ and $b_i > 0$ for $i = 0, 1, 2, \ldots, n$, in Theorem 2, it reduces to Corollary 2.16.

Remark 2.23: By taking $\eta = 0$ and $t = \mu = 1$ in Theorem 2.15, it reduces to Corollary 2.17.

Remark 2.24: By taking $\xi = 0$ and $k = \tau = 1$ in Theorem 2.15, it reduces to Corollary 2.18.

Remark 2.25: By taking $\eta = \xi, \mu = \tau$ and $t = k$ in Theorem 2.15, it reduces to Corollary 2.19.

Remark 2.26: By taking $\eta = \xi = 0$ and $\mu = \tau = k = t = 1$ in Theorem 2.15, it reduces to Corollary 2.20.

Remark 2.27: By taking $\eta = \xi = 0$ and $\mu = \tau = k = t = 1$ and $a_i > 0, b_i > 0$ for $i = 0, 1, 2, \ldots, n$, in Theorem 2.15, it reduces to Corollary 2.21.

Remark 2.28: By taking $b_i = 0$, $\tau = r$ and $\xi = \rho$ in Theorem 2.15, it reduces to Theorem 1.6.

Theorem 2.29: Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n with $Re(a_i) = a_i$ and $Im(a_i) = b_i$ such that for some $k \geq 1$, $\xi \geq 0$, $a_m \neq 0$, $a_m - \xi \leq a_{m-1} \leq \ldots \leq a_{m+1} \leq ka_m \geq a_{m-1} \geq \ldots \geq a_1 \geq a_0$ and for some $0 < \mu \leq 1$, $\tau \geq 1$, $\eta \geq 0$, $b_n \neq 0$, $b_n + \eta \geq b_{n-1} \geq \ldots \geq b_{m+1} \geq \mu b_m \leq b_{m-1} \leq \ldots \leq b_1 \leq t b_0$, then all the zeros of $P(z)$ does not vanish in the disk

$$|z| < \frac{|a_0|}{t(|b_0| + b_0) + (a_0 + |b_0|) + X_2 + |a_n| + |b_n| - a_n + b_n},$$

where $X_2 = 2 k (|a_m| + a_m - |b_m| + |b_n| - \mu(|b_m| + b_n) + \xi + \eta)$.

Theorem 2.30: Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n with $Re(a_i) = a_i$ and $Im(a_i) = b_i$ such that for some $0 < \tau \leq 1$, $k \geq 1$, $\xi \geq 0$, $a_m \neq 0$, $a_m + \xi \geq a_{m-1} \geq \ldots \geq a_{m+1} \geq \tau a_m \leq a_{m-1} \leq \ldots \leq a_1 \leq \kappa a_0$ and for some $\eta \geq 0$, $b_n \neq 0$, $b_n - \eta \leq b_{n-1} \leq \ldots \leq b_{m+1} \leq \tau b_m \geq b_{m-1} \geq \ldots \geq b_1 \geq b_0$, then all the zeros of $P(z)$ does not vanish in the disk

$$|z| < \frac{|a_0|}{k(|a_m| + a_m - |b_m| + b_n) + X_3 + |a_n| - b_n + |a_n| + |b_n|},$$

where $X_3 = 2 [|a_m| - |b_m| - \mu |a_m| + a_m + t(|b_m| + b_n) + \xi + \eta]$.

3. Proofs of the Theorems

Proof of the Theorem 2.1:

Let $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_{m+1} z^{m+1} + a_m z^m + a_{m-1} z^{m-1} + \cdots + a_1 z + a_0$

And $R(z) = (z-1)J(z)$ so that

Then $R(z) = (z-1)(a_0 z^n + a_1 z^{n-1} + \cdots + a_{m-1} z^{m-1} + a_m z^m + a_{m+1} z^{m+1} + \cdots + a_n z + a_n)$

$$= a_0 z^{n+1} - (a_0 - a_1) z^n + (a_1 - a_2) z^{n-1} + \cdots + (a_{m-1} - a_m) z^{n-m} + (a_m - a_{m+1}) z^{n-m} + \cdots + a_n z + a_n$$

Also if $|z| > 1$ then $\frac{1}{|z|^{n-i}} < f$ for $i = 0, 1, 2, \ldots, n-1$. Now

$$|R(z)| \geq |a_0||z|^{n+1} - \{ |a_0 - a_1||z|^n + |a_1 - a_2||z|^{n-1} + \cdots + |a_{m-1} - a_m||z|^n + |a_m - a_{m+1}||z|^n + \cdots + |a_n||z|^{n-m} + |a_{m-1} - a_m||z|^{n-m} + \cdots + |a_n||z|^{n-m} \}$$

$$+ \{ |a_0 - a_1||z|^n + |a_1 - a_2||z|^{n-1} + \cdots + |a_{m-1} - a_m||z|^n + |a_m - a_{m+1}||z|^n + \cdots + |a_n||z|^{n-m} + |a_{m-1} - a_m||z|^{n-m} + \cdots + |a_n||z|^{n-m} \}$$
Proof of the Theorem 2.30:

This shows that all the zeros of \(R(z) \) whose modulus is greater than 1 lie in the closed disk
\[
|z| > \frac{1}{\alpha_0} \left(\frac{2(1-a_0)+2(2k-1)}{2(1-a_0)+2(2k-1)} \right).
\]

Therefore, it follows that all the zeros of \(R(z) \) and hence \(J(z) \) lie in
\[
|z| < \frac{1}{\alpha_0} \left(\frac{2(1-a_0)+2(2k-1)}{2(1-a_0)+2(2k-1)} \right).
\]

Since \(P(z) = z^n J(z) \), it follows by replacing \(z \) by \(\frac{1}{z} \),
\[
|z| \geq \frac{1}{|\alpha_0|} \left(\frac{2(1-a_0)+2(2k-1)}{2(1-a_0)+2(2k-1)} \right).
\]

Hence \(P(z) \) does not vanish in the disk
\[
|z| < \frac{1}{|\alpha_0|} \left(\frac{2(1-a_0)+2(2k-1)}{2(1-a_0)+2(2k-1)} \right).
\]

This completes the proof of the Theorem 2.1.

Proof of the Theorem 2.15: Proof of the Theorem 2.15 is similar to that the proof of Theorem 2.1.

Proof of the Theorem 2.29: Proof of the Theorem 2.29 is similar to that the proof of Theorem 2.1.

Proof of the Theorem 2.30: Proof of the Theorem 2.30 is similar to that the proof of Theorem 2.1.

References

2. G. Eneström, Remarques sur un théorème relatif aux racines de l’ équation \(a_n \cdots + a_0 = 0 \) où tous les coefficients sont et positifs, Tôhoku Math.J 18 (1920), 34-36.

Source of support: Nil, Conflict of interest: None Declared.

[Copyright © 2020. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]