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ABSTRACT 
In this paper, we examined various regularization methods for obtaining meaningfully approximations to ill-conditioned 
linear systems. The methods considered include; Preconditioning, Truncated Singular Value Decomposition (T.S.V.D) 
and Tikhonov Regularization. These methods were applied to obtain stable solution estimates for the Hilbert system, 
Boundary Value Problems (B.V.P) and Discretized Fredholm Integral Equation of the First Kind. Also, different 
methods for choosing an optimal regularization parameter including the L-Curve method were considered. 
 
Keywords: Ill-Conditioned, Preconditioning, Truncated Singular Value Decomposition, Tikhonov Regularization and 
L-Curve. 
 
 
1. INTRODUCTION 
 
The linear system problem BAx =  arises in many branches of applied mathematics, computational sciences and 
engineering. [1]. The most common source of these problems is in the numerical solutions of ordinary and partial 
differential equations, as well as integral equations [2]. Often, if the matrix Α  is inherently ill-conditioned or the right-
hand side Β  is contaminated with noisy data, due to measurement error or by a slight perturbation, the computed 
solution is usually a meaningless approximation to the exact solution. The need arises to incorporate some information 
about the desired solution in order to stabilize the problem to obtain a useful and more stable solution, [6]. That is, we 
replace the original problem with a nearby problem to reduce the effects of perturbation error or noise-free data in the 
solution. One way of doing that, is by constraining the solution to minimize the error in the solution to obtain a desired 
solution. The process of incorporating this additional information in order to obtain a meaningful solution to the 
problem is called regularization [3]. The concept of regularization has been looked at by different researchers.  
 
Some of the works addressing the problem from a different angle are the work of Arnold [7] and Hansen [8]. In this 
article, we compare three methods for stabilizing the linear system 
 

BAx =                                                                                                                                                                            (1) 
 
The methods considered are preconditioning, Truncated singular value decomposition and Tikhonov regularization 
method.   
 
First, we solve system (1) by preconditioning the matrix Α  and the vector Β  by a pre-conditioned matrix Μ , to 
improve the convergence of the solution. The system is then examined with an example. 
 
In the second case, we consider minimizing the error in the system (1) by truncating the small singular values iσ  that 
magnify round-off errors, of the least square solution 
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of equation (1). 
 
Finally, we apply the Tikhonov regularization method, coupled with the L-Curve to compute the exact or least squares 
solution of linear in (1) by minimizing the quadratic function 
 

( ) 2

2
Β−Α= xxλφ +

2

2
Lxλ ,                                                                                                                                       (3) 
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subject to the side constraint, to reduce the error in the solution. The matrix L is an identity, a diagonal weighting 
matrix or a (𝑛𝑛 − 𝑝𝑝)𝑥𝑥 𝑛𝑛 discrete approximation of the thp  derivative operator and λ  is a regularization parameter, 
greater than zero. Our computational results shows that the later generates meaningful solution approximate than the 
first two approaches.  
 
2. CONDITIONING OF A PROBLEM 
 
Conditioning refers to the sensitivity of the solution of any giving problem to small changes in the input data, [5]. 
 
Let ( )xP  denote the value of a problem corresponding to input data x  and xδ  denotes a small perturbation in x , 
then P  is said to be ill-conditioned, if the relative error in the solution is much larger than the relative error in the 
data. That is: 
 
( ) ( )

( )xP
xPxxP −+δ

>>
x
xδ

                                                                                                                                            (4) 

 
For many problems, a condition number can be defined. If the condition number is large, then the problem is said to 
be ill-conditioned. On the other hand, if the condition number is small, then the problem is said to be well-
conditioned. 
 
Consider the problem of computing a function ( )xfy = . 
 
Suppose we are interested in the effects on y ϵΥ when a given x ϵΧ  is perturbed slightly by a small amount xδ , 

then the relative size of the perturbation in x  is 
x
xδ

, and it’s corresponding relative size of the perturbation in ( )xf  

can be written as 
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The quantity 
 

( )
( )xf

xxf
k

'

=                                                                                                                                                                     (5) 

is called the condition number for the problem. If the quantity is large, the problem is ill-conditioned; on the other 
hand, if it is small, the problem is well-conditioned. 
 
Condition Number of a Matrix 
 
Consider the special case where f  in equation (5) is a linear function as in (1), then the k  can be estimated as follows: 
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This can be simplify as: 
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But 

AxAAxAxAAIxx 111 −−− ≤=== . 
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Or further 

1−≤ A
Ax
x

.                                                                                                                                                                 (7) 

 
Combining equation (6) and (7) we obtain 

1−≤ AAk   .                                                                                                                                                                (8) 

 
But for certain value of α , it can be deduced that 

1−= AAk α ,                                                                                                                                                              (9) 

 
where α is proportionality constant. 
 
3. THE HILBERT SYSTEM AND ITS ACCURACY 
 
The Hilbert system is an n x n square matrix denoted by nH and composed of fractional entries with the largest values 
located for small values of I and j, with entries defined as 

1
1
−+

==
ji

hH ijn ,       where 1≤ i ≤ n, and 1 ≤ j ≤ n,                                                                                            (10) 

 
called the Hilbert Matrix of order n. 
 
The Hilbert matrix arises in least squares polynomial approximation of continuous functions on the interval [0, 1], 
using the standard basis nxxx ,.......,,,1 2  for nP . Thus, the matrix [ ]ijn hH =  is easily identified as the Hilbert 
matrix since 

1
11

0
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−+
== ∫ −+
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dxxh ji

ij                                                                                                                                         (11) 

 
4. A FORMULATED PROBLEM 
 
Consider the problem of solving the linear system BHx = , where H  is a 12 x 12 Hilbert matrix, and Β  chosen such 
that the linear system has the exact solution x = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. 
 
If the system is solved, using any of the standard method such as the Exact Inverse, QR, LU, and Cholesky 
factorizations, we realized that for small values of n, the computed solution ( )x̂  is reasonably accurate. However as n 
increases the precision degenerates very rapidly. 
                                        

Table 1: Accuracy of a Hilbert System. 
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Table 1 shows the error, the condition number and the number of digits lost for selected values of n. We realize from 
the Table 1, that the exact solution of the system is accurate to about 16 significant digits. For small values of n, the  
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computed solution shows a significant digit of accuracy. When n ≥ 12, the computed solution ( x̂ ), has little or no 
significant digits of accuracy.  
 
In effect, we can deduced that a matrix H  has condition number of order K10  if H and B  are accurate to d 
significant digits. The computed solution x̂  to BHx =  is also said to be accurate to ( )kd −  digits. If k is greater 
than d, then the computed solution has no digits of precision. 
 
5. REGULARIZATION METHODS FOR LINEAR ILL-POSED PROBLEMS 
 
Regularization methods are used to obtain meaningful solution estimates for discrete ill-posed problems or rank-
deficient linear problems [9]. In cases where some parameters are ill-determined either by least-square methods or in 
situations where the number of parameter is larger than the number of available measurements, it is necessary to 
stabilize the system by using regularization methods. Some of these methods are: Truncated Singular Value 
Decomposition (TSVD), Preconditioning and Tikhonov Regularization. 
 
6. TRUNCATED SINGULAR VALUE DECOMPOSITION 
 
The idea behind truncated singular value decomposition is to replace all the small singular values less than certain 
threshold say, α  with exact zeros. This reduces the error in the solution that contaminates the solution and also 
reduces the order of the matrix. Thus in theory, the singular value decomposition (S.V.D) of a matrix Α , is a 
decomposition of the form 

T
ii

n

i
i

T VUVU ∑=∑=Α ∑
=1  

 
If Α is invertible, then its inverse is given by 

∑
=

−=Α
n

i

T
iii uv
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where 
 
U = [𝑢𝑢1, …., 𝑢𝑢𝑛𝑛 ],     V = [𝑣𝑣1, …., 𝑣𝑣𝑛𝑛 ], and  𝛴𝛴 = diag[𝜎𝜎𝑖𝑖 , …., 𝜎𝜎𝑛𝑛 ]. 
 
Therefore, the solution to Β=Αx can be defined as 
 

( )∑ −=
n

i
i

T
ii vbux 1σ ,     for  b ϵΒ                                                                                                                                (12) 

 
The pseudo-inverse ( )+Α  is also given by 
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and the least squares solution lsx̂  to the least squares problem is given  

i
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The equation (14) shows that, it is the small singular values that magnify round-off errors, thus resulting in large errors 
in the solution. The sensitivity or stability of the solution x  and lsx  to perturbations of Α and Β can be measured by 

the 2-norm, with condition number of Α  defined as: 

( )
s

lcond
σ
σ

=ΑΑ=Α −

2

1
2

                                                                                                                                  (15) 

Thus, the condition number of Α can be defined as the ratio of the largest singular values ( )lσ  and the smallest 

singular values ( )sσ  ofΑ . 
 
If the formulated problem above is regularized using truncated singular value decomposition, we obtain the result 
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shown below. 
 

Table 2: Truncated Singular Values 
           i            iσ             α  )(rRank  error.max  

          

12
11
10
9
8
7
6
5
4
3
2
1

     

16

14

12

10

08

07

05

04

03

02

01

0

100772.1
106492.2
101113.3
102520.2
101229.1
100824.4
101163.1
103309.2
107223.3
104739.4
108028.3
107954.1

−

−

−

−

−

−

−

−

−

−

−

x
x
x
x
x
x
x
x
x
x
x
x

     

16

14

12

10

08

07

05

100772.1
106492.2
101113.3
102520.2
101229.1
100824.4
101163.1

−

−

−

−

−

−

−

x
x
x
x
x
x
x  

     

12
11
10
9
8
7
6
5
4
3
2
1

 
    

01

03

05

06

05

04

03

1031.3
1019.1
1051.4
1057.3
1091.2
1063.1
1009.1

−

−

−

−

−

−

−

x
x
x
x
x
x
x  

 
7. PRECONDITIONING 
 
The use of iterative methods for solving symmetric positive definite systems of linear equations, require some form of 
preconditioning Μ  to improve the convergence of the solution by manipulating the spectrum of the coefficient matrix. 
Given the linear system Β=Αx , we transform it into an equivalent system of the form ΜΒ=ΜΑx , such that the 
conditioned number of ΜΑ  is far less than that of Α , that is ( )ΜΑk  << ( )Αk . Basically, there are two types of 
preconditioner’s, the left and the right preconditioner’s, but for this study we will restrict our self to only the left 
preconditioner. 
 
The Jacobi and Gauss-Seidel Preconditioner 
 
The method of Jacobi and Gauss-Seidel for solving Β=Αx , split the matrix Α  into ,UDL ++=Α  , where L  

is a lower triangular matrix, U  is an upper triangular matrix and D  a diagonal matrix. The Jacobi scheme is given by 
 

( ) ,111 Β++−= −−+ DxLUDx kk  ,........2,1,0=k                                                                                                 (16) 
 
And the Gauss-Seidel scheme is also given by 
 

( ) ( ) Β+++−= −−+ 111 DLUxDLx kk                                                                                                                     (17) 
 
Both schemes converge to the solution if the matrix is strictly diagonally dominant. In the Jacobi iteration, the matrix 

1−D  is used to rescale all the non-diagonal entries of the matrixΑ , to obtain a good preconditioner, known as the 
Jacobi Preconditioner.  
 
Thus, if Α  is ill-conditioned then Α=Μ −1D  is better conditioned thanΑ . A Gauss-Seidel preconditioner can be 
used to solve the same problem. Here, the pre-conditioning matrix is lower triangular, and is defined as 

( ) ,1−+=Μ DL from the Gauss-Seidel iteration. Solving the linear system with a Gauss-Seidel preconditioner is 
computationally expensive, but at times yields a better result than the Jacobi Preconditioner. Both the Jacobi and the 
Gauss-Seidel schemes are used for linear systems where the coefficient matrix is sparse, consist mainly of zeros. Such 
matrices occur in the numerical solution of boundary-value problems. The following examples illustrate the use of 
these preconditioner’s. 
 
8. A SIMPLE EXAMPLE 
 
Consider the boundary-value problem 
 

,0=+ yyxx uu                                                                                                                                                                (18) 
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In the rectangle ( ){ }40,40:, ≤≤≤≤= yxyxR , 
 
where ( )yxu ,  denotes the temperature at the point ( )yxu , , with boundary values 

( ) ,1800, =xu     ( ) ,204, =xu  for   40 << x  

( ) ,80,0 =yu       ( ) ,0,4 =yu   for   40 << y  
 
Central-difference approximation for xxu and yyu are given by 

( ) ( ) ( )
2

,,2,
h

yhxuyxuyhxuuxx
−+−+

=                                                                                                              (19) 

 
( ) ( ) ( )

2

,,2,
h

hyxuyxuhyxuu yy
−+−+

=                                                                                                              (20) 

 
Then,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,4,,,,,, =−−+++−++≈+ yxugyxugyxuyhxuyhxuyxuyxu yyxx                        (21) 
 
Choosing ,1== gh corresponds to approximating the temperature ( )yxu ,  at nine interior points in the rectangle 
shown in Figure 1. 
 

 
Using the central difference formula for the second derivative, to approximate the partial derivatives at each of the nine 
interior points, results in the following linear systems. Thus xxu  and yyu  together with the five-point formula gives the 
following linear systems, 

1004 421 −=++− ppp  

204 5321 −=++− pppp   

204 632 −=+− ppp  

804 7541 −=++− pppp  

04 86542 =++−+ ppppp                                                                                                                                  (22) 

04 9653 =+−+ pppp  

2604 874 −=+− ppp  

1804 9875 −=+−+ pppp  

1804 986 −=−+ ppp  
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where 92,1 ,..., ppp  are approximations of the temperature in the interior of the rectangle. 
 
In matrix form, we have ,Β=Αp  where Α  is a 9 x 9 symmetric positive definite matrix and 𝑝𝑝 the vector solution. 
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





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0
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                                                  (23)  

 
If we solve the linear system ,Β=Αp  for 𝑝𝑝 and regularized the solution using the Jacobi and Gauss-Seidel schemes, 
we obtain the solutions shown in figure 3.                                                                   
                 

Table 3: Optimal Solution For Jacobi and Gauss-Seidel Preconditioner’s 

JX  GX  JpredX  GSpredX  Exact  

2344.84
7173.111
8058.112
2887.45
8974.69
5744.79
0915.27
1459.43
6630.55

 

2856.84
785.111
857.112

3570.45
9998.69
6427.79
1427.27
2141.43
7141.55

 

2857.84
786.111
857.112

3571.45
0000.70
6429.79
1429.27
2143.43
7143.55

 

2857.84
786.111
857.112

3571.45
0000.70
6429.79
1429.27
2143.43
7143.55

 

2857.84
786.111
857.112

3571.45
0000.70
6429.79
1429.27
2143.43
7143.55

 

 
From Table, we conclude that an optimal solution is possible, when Boundary value problems are discretized into a 
linear system and solve using Preconditioning. 
 
9. TIKHONOV REGULARIZATION METHOD 
 
Regularization methods for least square problems are the most commonly used method for obtaining stable and smooth 
solution to rank deficient and ill-posed problems, [8]. In solving such problems, it is necessary to incorporate additional 
information as smoothness, continuity and the size of the residual to obtain the desired solution for x . Such additional 
information is then used as a side constraint to control the smoothness of the solution. The side constraint is usually of 
the form 

( ) ,2

2
LxxC λλ =                                                                                                                                                          (24) 

 
Where L is the identity matrix ( )nΙ  or an (𝑛𝑛 𝑥𝑥 𝑝𝑝)𝑥𝑥 𝑛𝑛 discrete approximation of the 𝑝𝑝𝑡𝑡ℎ  derivative operator. The side 

constraint gives a fair balance between minimizing ( )xCλ  and minimizing the residual norm 
2

2
Β−Αx  instead of 

giving us the solution Β=Αx . The basic idea is that a regularized solution x  should give a small residual and also 
be small in 2- norm to give a desired solution. One of the most important forms of regularization of ill-posed least 
squares problems is the Tikhonov Regularization. This method is often used to regularize ill-posed problems. It 
involves obtaining the exact or least squares solution of linear systems by minimizing the function 
 

( ) ,2

2
Β=Α= xxλφ                                                                                                                                                     (25) 
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subject to the side constraint ,Lx  where the matrix L  is either an identity matrix, a diagonal weighting matrix or an 

(n - p) x n discrete approximation of the thp  derivative operator. Since standard Algorithms normally fails to provide 

suitable solution to stabilize the system, the regularized solution ,λx  is defined as the minimizer of the weighted 
combination of the residual and the side constraint according to Wang and Linz (2003). 
 
The minimized expression is 

( ) ,2

2

2

2
Lxxx λφλ +Β−Α=                                                                                                                                    (26) 

 
where λ is greater than zero and is called a regularization parameter. 
 
Regularization of Order Zero 
If we let ,nL Ι= the minimizing function becomes 

( ) 2

2

2

2
xxx λφλ +Β−Α=                                                                                                                                         (27) 

 

This signifies that it can be expressed as a balance between the quantities, 
2

2
Β−Αx  and x  . Here, the 

regularization parameter controls the weights given to minimization of the side constraint relative to the minimization 
of the residual norm. But we can show that the minimizing solution ( )λx  is given by the non-singular linear system as 

( ) .'' ΒΑ=Ι+ΑΑ λλ x  From 
 

( ) 2

2

2

2
xxx λφλ +Β−Α= ,                                                                                                                                       (28) 

 
It follows that 

( ) ( ) ( ) xxxxx '''' λφλ +ΒΒ−ΒΑ−ΑΑ=                                                                                                                 (29) 
 
But ( ) ΒΑ 'x and ( )xΑΒ'  are equal since they are scalars. So  

( ) ( ) ( ) ,'''2' ΒΒ++ΒΑ−ΑΑ= xxxxx λφλ                                                                                                             (30) 
 

( ) ,''''2''' ΒΒ++ΒΑ−ΑΑ= xxxxx λφλ                                                                                                              (31) 
 
Differentiating the function ( )xλφ  for the minimizing solution ,λx we obtain 

( )
0== λ

λ

δ
δφ

xx
x

x
                                                                                                                                                     (32) 

 
It implies that 

( )
,02'2'2 =+ΒΑ−ΑΑ== λλλ

λ λ
δ

δφ
xxxx

x
x

                                                                                                  (33) 

 
Or ( ) .'' ΒΑ=Ι+ΑΑ λλ x                                                                                                                                           (34) 
 
Thus, 

( ) ( )ΒΑΙ+ΑΑ= − '' 1λλx                                                                                                                                           (35) 
 
The regularization method above penalizes large components in the solution and is called regularization of Order Zero. 
 
Regularization of Order One and Two 
 
Regularization of Equation 27 in most cases dampens components that are large in magnitudes, since the component in 
a solution oscillates with moderate amplitudes. Such component are undesirable and may need a penalty term that is 
large for rapid change in the solution. This penalty term result in another form of regularization called “Order One”. 
For this reason the penalty term is added to Equation 27 to obtain 
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( ) ( )∑
=

−
−+Β−Α=

n

i
ii

xxxx
2

2

1

2

2
λφλ                                                                                                                  (36) 

The above expression is minimized by the solution of ( ) ,11 ΒΑ=+ΑΑ TTT xLL λλ where 1L  is an (n -1) x n first 
derivative operator defined as 

1L = 





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
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−
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−

11000
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0011
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



 

 
For regularization of Order Two, the penalty is much stronger than that of Order One, and is based on minimizing the 
function 

( ) ( )∑
=

−+
+−+Β−Α=

n

i
ii

xxxxx
2

2

11

2

2
,2λφλ                                                                                                   (37) 

 
Which lead to the system ( ) .11 ΒΑ=+ΑΑ TTT xLL λλ  Here 2L  is an (n – 2) x n second derivative operator defined 
as 



















−

−
−

=

12100
0

1210
00121

2









L

 
 
The second derivative operator 2L  also helps us to compute λx for Order Two regularization using MATLAB or 
OCTAVE Script files for regularization. 
 
10. APPLICATION TO THE SOLUTION OF FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND 
 
Consider Fredholm integral equation of the first kind given by 

( ) ( ) ( )∫=
1

0

, dttxtsKsg   for  s ϵ [ ],1,0                                                                                                                        (38) 

 
where the right-hand side vector ( )sg  and the kernel K  are unknown functions, while ( )tx  is an unknown solution 
[4]. 
 
If the integral equation is discretized using the Quadrature (or Galerkin) methods, a quadrature rule with abscissas 

ntttt ,.....,, 32,1  and corresponding weights nwwww ......,,, ,321  is obtained as an approximate to the integral 
equation. The integral equation then becomes: 

( ) ( ) ( ) ( )∫ ∑
=

=
1

0 1

,,
n

j
jj txtsKwdttxtsK                                                                                                                          (39) 

 
If the approximation is applied to an integral equation with m  distinct point values ,,......,,, 321 mssss  we obtain an 

m  x n  matrix Α  given by ( )jijij tskwa ,=  and a right hand side vector Β , also by ( )ii sg=Β . The equation 

Β=Αx  becomes: 

( ) ( ) ( )∑
=

=
n

j
jjiji txtskwsg

1

,                                                                                                                                        (40) 
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11. A SAMPLE PROBLEM 
 
Consider the integral equation 

( ) ( )∫ +
−

=
+

+
1

0

1
1

1
1

s
edttxe

s
ts                                                                                                                                             (41) 

 
To solve the equation numerically, we discretized the equation into a linear system ijij x Β=Α  or 

( ) ( )∑ = ,, ijjij sgxtskw
 
by using equation (40), with an n-point composite trapezoidal rule and with uniformly 

spaced quadrature points. From (40), the kernel of the integral equation in (40) is ( ) ( ) ,, 1 ji tt
ji ettk +=  with its weight 

function as ,jw  the computed solution as ,jx  and the function ( )itg  also given by 

( )
( )

,
1

11

+
−

=
+

i

t

i t
etg

i

 

where its =  and jtt =  for ni ,....,3,2,1=  and nj ,.....,3,2,1=  
 
Thus, for a five point composite trapezoidal rule, the integral limits from 0 to 1 is divided into a number of strips of size 

4=n , to obtain the five points, using equation (40). While for small values of n , the computed solution show some 
resemblance to the exact solution, the error increases rapidly with n . Thus no value of x  approximates to the exact 
solution with acceptable accuracy. The Table 4 shows the computed and the exact solutions for selected values of n . 
 

Table 4: Computed Solution for Selected Value of n . 
   sPo int )(t          4=n          8=n         16=n         Exact  

      

0000.1
8750.0
7500.0
6250.0
5000.0
3750.0
2500.0
1250.0
0000.0

       

6093.0

4539.1

4737.0

4734.1

5884.0

−

−

−

−

      

5480.0
7075.1
4432.0

3715.3
8604.1

4871.3
5601.0

7584.1
5306.0

−

−

−

     

3

3

4

3

3

3

3

3

4

9681.1
1782.7
0349.1
0280.6
0043.3
9364.3
3437.1
9354.5

1775.3

e
e
e
e
e
e
e
e

e

−

−

        

0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1

 

 
The reason for this anomaly is quite clear when we look at the condition numbers of some selected values of n , shown 
in the Table 5 below. 
 

Table 5: Condition Numbers for Selected Values of n . 
        n     Condition  Number  

       

16
8
4

       
15

7

5

107636.5
105787.4
101649.1

x
x
x

 

 
From the table, as n  increases from 4 onward, we expect the discretization error to reduce, that is the accuracy with 
which (41) represents (40) gets better. Unfortunately this is not so, the condition numbers rather increases rapidly 
destroying any gain from the more accurate discretization. This makes it quite clear that any computations with n  
greater than sixteen will make the solution worse. 
 
12. APPLYING TIKHONOV REGULARIZATION IN SOLVING THE SAMPLE PROBLEM 
 
Generally, when we solve ill-posed problems by discretizing the equation, the matrix we get is inherently ill-
conditioned, and the condition numbers increases rapidly with n . Thus, there is the need to apply some form of 
regularization in order to obtain reasonable approximate solution. 
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When Order Zero, One and Two Tikhonov regularization was applied to our sample problem for the special case 

,16=n the solutions for Order One and Two converges approximately to the exact solution, but that of Order Zero 
shows little convergence to the exact solution. A detailed solution for Order Zero, One and Two, for a given range of 
values of the regularization parameter λ  was computed and the best for each order selected. These convergent 
solutions are not the same as the optimal solution; rather it gives us a fare idea of the optimal solution. The respective 
convergent solutions are shown in Table 6. 
 

Table 6: Convergent Regularized Solution for 16=n  
 Order  Zero  Order  One   Order  Two   Exact  

46762.0
01090.1
05670.1
08930.1
10710.1
11260.1
10810.1
09520.1
07560.1
05060.1
00440.1
98904.0
95428.0
91211.0
88038.0
84232.0
40206.0

   

99886.0
99886.0
99886.0
99886.0
99886.0
99886.0
99886.0
99886.0
99886.0
99886.0
99886.0
99886.0
99886.0
99886.0
99886.0
99886.0
99886.0

    

9991118.0
9990687.0
9990257.0
9989826.0
9989396.0
9988965.0
9988535.0
9988104.0
9987673.0
9987243.0
9986812.0
9986382.0
9985951.0
9985521.0
9985090.0
9984659.0
9984229.0

   

0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1
0000.1

 

 
13. DETERMINATION OF OPTIMAL REGULARIZATION PARAMETER AND SOLUTION 
 
In determining the optimal regularization parameter λ  corresponding to the optimal solution, two methods can be 
applied. The first is by inspection and the second by the use of the L-Curve approach. For the method by inspection, we 
compute the residual norm, the solution norm and inspect the result for a range of values of the parameterλ . The 
behavior of the residual norm gives a good indication of a proper choice ofλ . If the residual norm increases or 
decreases steadily with λ , until a critical value 0λ , where further increases or decreases have no effect on the  
 
residual norm, then 0λ   is chosen as the optimal regularization parameter and its corresponding value becomes the 
optimal solution. But the method by inspection, is a times very difficult to use in estimating the optimal solution. 
 
However, it is more appropriate to use the L-Curve method coupled with the method of inspection to determine the 
critical value for the optimal solution. The two methods together help us to identify clearly all the parameter points. 
Here, we plot the solution norm against the residual norm to obtain the L-Curve. The optimal regularization parameter  

0λ  is usually identified at the sharp corner of the L-Curve. Normally, we make use of the points concentrated at the 

sharp corner of the L-Curve to determine the optimal regularization parameter 0λ . The optimal solution corresponding 

to the optimal regularization parameter 0λ  is obtained from the column regularized solutions computed. The first 

column corresponds to 16
1 10−=λ , the second 15

2 10−=λ , and the rest continues in that order. The     L-Curve for 
Order Zero, One and Two for the sample problem are shown in the figures 2, 3, and 4 respectively. 
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Figure 2: L-Curve for Order Zero Regularization 

 
For Order Zero regularization, the regularization parameters concentrated at the sharp corner of the L-Curve by 
inspection, are 13

4 10−=λ  and 12
5 10−=λ . The regularized solutions corresponding to the parameters 13

4 10−=λ   

and 12
5 10−=λ , do approximate a little to the exact solution, with 𝜆𝜆5 better conditioned than  𝜆𝜆4. Hence, order zero 

regularization for this problem has an optimal solution with regularization parameter  𝜆𝜆5 =10−12 .  
 

 
Figure 3: L-Curve for Order One Regularization 

 
For Order One regularization, the regularization parameters concentrated at the sharp corner of the L-Curve by 
inspection, are 10

7 10−=λ  and 9
8 10−=λ . The regularized solutions corresponding to the parameters 10

7 10−=λ  

and 9
8 10−=λ , do approximate to the exact solutions better compared to that of Order Zero. Therefore, Order One 

regularization in this case, has an optimal solution with a regularization parameter of 𝜆𝜆8 =10−9. 
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Figure 4: L-Curve for Order Two Regularization 

 
For Order Two regularization, the regularization parameters concentrated at the corner of the L-Curve are 5

12 10−=λ , 
4

13 10−=λ  and 3
14 10−=λ  respectively. All the regularized solutions corresponding to the parameters 5

12 10 ,λ −=
4

13 10−=λ  and 3
14 10−=λ  approximate to the exact solution, but the entries of the solution for 4

13 10−=λ  are 

well skewed and better approximate to the exact solution compared to the solutions of 5
12 10−=λ  and 3

14 10−=λ  .  
Therefore, Order Two regularization in this case, has an optimal solution with regularization parameter  𝜆𝜆13  =10−4.  
 
14. THE OPTIMAL SOLUTION 
 
Comparing the optimal solutions for Order Zero, One and Two regularization with the exact solution, it is observe that, 
the optimal solution for Order Two are well skewed and approximate better to the exact solution. The optimal 
regularization parameter for Order Two is 4

13 10−=λ and the corresponding optimal solution (
13λx ) is shown in 

Table 7. 
 

Table 7: Optimal Solution 

Exact  ( )xSolution  
gularizedRe Solution          

x̂  at 4
13 10−=λ  

zedUnregulari Solution  

0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1
0000000.1

 
9991094.0
9990675.0
9990245.0
9989816.0
9989387.0
9988957.0
9988527.0
9988097.0
9987667.0
9987237.0
9986807.0
9986377.0
9985947.0
9985517.0
9985087.0
9984656.0
9984226.0

 

3

1

3

4

4

1

3

4

3

4

3

4

3

1

3

4

4

9681.1
5030.2

1782.7
3898.1

0349.1
4620.1

0280.6
3519.1

0043.3
2034.1

9364.3
9390.1
3437.1
0580.8
9354.5
0710.2

1775.3

e
e
e
e

e
e

e
e

e
e

e
e
e
e
e
e

e

−
−

−

−

−

−

−
−
−

−

−
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In conclusion, the optimal solution for the problem approximate accurately to the exact solution, compared to the un-
regularized solution which shows no resemblance to the exact solution. The maximum error in the computed solution 
reduced drastically to 15774.1 −e  in the optimal solution. 
 
15. CONCLUSION 
 
In this paper, we studied various methods for solving ill-conditioned linear systems, using the Hilbert system as a 
prototype. The regularized solutions of Order One and Two for our test problem gave an accuracy of about 3 digits of 
precision, with parameter values 910−=λ  and 410−=λ  respectively. Order Zero shows no accuracy in digits 
precision of the regularized solutions. The L-Curve was used to determine the optimal regularization parameter. The 
optimal regularization parameter corresponding to the optimal solution was determined at the corner part of the L-
Curve. The L-Curve for Order Two regularization gave us the optimal solution with a regularization parameter value

4
13 10−=λ . In conclusion, we justify that in the absence of computational errors and with proper regularization 

techniques, a convergent discretization error leads to a convergent solution. 
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