• A MODEL FOR TRANSMISSION DYNAMICS OF TUBERCULOSIS WITH ENDEMIC EQUILIBRIUM

Nidhi Nirwani*, V. H. Badshah, R. Khandelwal, P. Porwal, India.

Abstract


In this paper, a mathematical model is proposed and analyzed to study the dynamics of tuberculosis based on MSEIR model. It is assumed that the rate at which number of latently infected individuals moves to recovery class R and again from recovery class to latent class L is not equal.  The possibility of existence of endemic equilibrium state is discussed and examined the basic reproduction number.


Keywords


Epidemiology, Latent TB Treatment, Transmission dynamics, Basic Reproduction Number, Endemic equilibrium state (Stability).

Full Text:

pdf


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© 2010-2022 International Journal of Mathematical Archive (IJMA)
Copyright Agreement & Authorship Responsibility
Web Counter
https://section.iaesonline.com/akun-pro-kamboja/https://journals.uol.edu.pk/sugar-rush/http://mysimpeg.gowakab.go.id/mysimpeg/aset/https://jurnal.jsa.ikippgriptk.ac.id/plugins/https://ppid.cimahikota.go.id/assets/demo/https://journals.zetech.ac.ke/scatter-hitam/https://silasa.sarolangunkab.go.id/swal/https://sipirus.sukabumikab.go.id/storage/uploads/-/sthai/https://sipirus.sukabumikab.go.id/storage/uploads/-/stoto/https://alwasilahlilhasanah.ac.id/starlight-princess-1000/https://www.remap.ugto.mx/pages/slot-luar-negeri-winrate-tertinggi/https://waper.serdangbedagaikab.go.id/storage/sgacor/https://waper.serdangbedagaikab.go.id/public/images/qrcode/slot-dana/https://siipbang.katingankab.go.id/storage_old/maxwin/https://waper.serdangbedagaikab.go.id/public/img/cover/10k/